OMI AI ECG Model - application for more accurate heart attack diagnosis
Globally, 50M patients with chest pain present to emergency departments each year. In these patients a 12-lead electrocardiogram (ECG) serves as a swift and readily available diagnostic test for identifying acute obstructive heart...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto OMI AI ECG Model
Duración del proyecto: 29 meses
Fecha Inicio: 2024-01-01
Fecha Fin: 2026-06-30
Líder del proyecto
POWERFUL MEDICAL SRO
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Globally, 50M patients with chest pain present to emergency departments each year. In these patients a 12-lead electrocardiogram (ECG) serves as a swift and readily available diagnostic test for identifying acute obstructive heart attacks (OMI), a life-threatening condition that requires prompt transfer to a cardiac catheterization laboratory. The OMI AI ECG Model is an AI-powered mobile application that can process any ECG and diagnose OMI faster and more precisely than current state-of-the-art criteria, according to which 50% of OMI cases are missed or delayed in treatment. This technology combines a patented ECG digitization system converting any paper-form or screen-based images of ECGs into standardized digital waveforms and an AI algorithm trained by physician experts with 50+ years of experience in OMI diagnosis from ECG who established the OMI paradigm.It is immediately applicable, doesn't require additional hardware and works with any healthcare infrastructure. In a large international validation of over 2,000 patients it has proven to be twice as sensitive as the current standard of care in diagnosing OMI and can detect it 2.9 hours faster. Due to more accurate and faster diagnosis, this solution will cause a paradigm shift in heart attack patient management, saving millions of lives and decreasing the economic burden of cardiovascular disease.