Mg2+ is the second most abundant intracellular cation after potassium and it plays an essential role in the human body. The kidney is the key organ regulating Mg2+ homeostasis through complex processes of excretion and reabsorptio...
ver más
Descripción del proyecto
Mg2+ is the second most abundant intracellular cation after potassium and it plays an essential role in the human body. The kidney is the key organ regulating Mg2+ homeostasis through complex processes of excretion and reabsorption. This takes place in the nephrons, the functional units of the kidney, via paracellular mechanisms and ion transporters. Alterations in Mg2+ homeostasis are associated with several diseases and vice versa. Hypomagnesemia (serum Mg2+ <0.70 mmol/L) is the most common form of Mg2+ disturbance which can be due to impaired intestinal Mg2+ absorption or renal Mg2+ wasting. Remarkably, hypomagnesemia is associated with highly prevalent metabolic disorders including diabetes and metabolic syndrome. In the past, many genetic causes of hypomagnesemia and renal Mg2+ wasting have been identified in humans, encompassing mutations in magnesiotropic genes. This has been crucial to decipher part of the mechanisms involved in Mg2+ transport and renal (patho)physiology. However, many cases of Mg2+ disturbances cannot be explained with the current knowledge, meaning that there is a clinical need to further elucidate the mechanisms underlying hypomagnesemia to find an effective treatment. Recently, we have discovered OIT3, a new gene involved in Mg2+ handling. However, the mechanisms of action and its physiological role need to be deciphered. The aim of the present project is to unravel the physiological role and mechanisms of action of OIT3 in relation to Mg2+ handling as well as find clinical indications from human kidney disease where OIT3 can play a role. Applying a wide range of techniques including electrolyte analysis, advanced microscopy, RNAseq and bioinformatics, I will provide mechanistic insights and a holistic view into the role of OIT3 in renal Mg2+ homeostasis. This approach will contribute to the discovery of potential therapeutic targets and biomarkers of electrolyte-related kidney disease.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.