Viruses cause significant disease, exemplified by the COVID-19 pandemic. Most studies of virus-host interactions focused on proteins, however, RNA holds great promise for basic and therapeutic exploration. Viruses evolved elaborat...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC-2017-21986
Mechanisms of RNA viruses to counteract the host immune resp...
309K€
Cerrado
UncoveRNAi
Deciphering the mechanisms of antiviral RNA interference in...
213K€
Cerrado
MDR
Structural and functional characterization of MAVS DDX3 vRNA...
188K€
Cerrado
BFU2010-18767
INTERACCIONES PROTEINA PROTEINA COMO MODULADORAS DE LA TRANS...
36K€
Cerrado
BIO2015-68758-R
FACTORIAS DE REPLICACION DE VIRUS ARN: DE LA BIOLOGIA ESTRUC...
188K€
Cerrado
V-RNA
Two facets of viral RNA mechanistic studies of transcriptio...
2M€
Cerrado
Información proyecto MOVIRNA
Duración del proyecto: 66 meses
Fecha Inicio: 2023-12-12
Fecha Fin: 2029-06-30
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Viruses cause significant disease, exemplified by the COVID-19 pandemic. Most studies of virus-host interactions focused on proteins, however, RNA holds great promise for basic and therapeutic exploration. Viruses evolved elaborate strategies for RNA protection, including 5’ capping and internal modification. The goal of this proposal is to discover and characterize viral RNA modifications installed by viral enzymes, including their role in innate immune evasion. This could uncover novel RNA-based mechanisms of viral replication and host modulation and lead to therapeutic targets.
Many viruses encode methyltransferases (MTases) for canonical RNA 5’ capping. Curiously, no cap was identified for hepatitis C virus (HCV), an important human pathogen. We recently found that the cellular metabolite, flavin adenine dinucleotide (FAD), is used as noncanonical initiating nucleotide by the HCV polymerase at high frequency resulting in a 5’FAD cap on HCV RNA. This is the first description of a virus using this cap type for protecting its RNA and, remarkably, the first robust description of FAD capping across any kingdom of life. In Aim 1, we will investigate the functional role of the HCV 5’FAD cap, including viral evasion of innate immune sensing and RNA stability. We will also explore the evolutionary conservation of metabolite capping across RNA viruses and explore its potential as antiviral target.
Viral MTases further perform 2’-O-methylation (2’OMe) of internal RNA residues, a modification that also may protect from innate recognition. In Aim 2, the extent of 2’OMe on viral RNA will be mapped and the individual contribution of 5’ and internal modification to innate immune evasion will be dissected.
In aggregate, these aims will uncover how viral enzymes modify the termini and internal viral RNA residues and associated evasion of innate immunity. The outcome could reshape understanding of viral RNA biology, open novel research directions and lead to antiviral targets.