Viruses cause significant disease, exemplified by the COVID-19 pandemic. Most studies of virus-host interactions focused on proteins, however, RNA holds great promise for basic and therapeutic exploration. Viruses evolved elaborat...
Viruses cause significant disease, exemplified by the COVID-19 pandemic. Most studies of virus-host interactions focused on proteins, however, RNA holds great promise for basic and therapeutic exploration. Viruses evolved elaborate strategies for RNA protection, including 5’ capping and internal modification. The goal of this proposal is to discover and characterize viral RNA modifications installed by viral enzymes, including their role in innate immune evasion. This could uncover novel RNA-based mechanisms of viral replication and host modulation and lead to therapeutic targets.
Many viruses encode methyltransferases (MTases) for canonical RNA 5’ capping. Curiously, no cap was identified for hepatitis C virus (HCV), an important human pathogen. We recently found that the cellular metabolite, flavin adenine dinucleotide (FAD), is used as noncanonical initiating nucleotide by the HCV polymerase at high frequency resulting in a 5’FAD cap on HCV RNA. This is the first description of a virus using this cap type for protecting its RNA and, remarkably, the first robust description of FAD capping across any kingdom of life. In Aim 1, we will investigate the functional role of the HCV 5’FAD cap, including viral evasion of innate immune sensing and RNA stability. We will also explore the evolutionary conservation of metabolite capping across RNA viruses and explore its potential as antiviral target.
Viral MTases further perform 2’-O-methylation (2’OMe) of internal RNA residues, a modification that also may protect from innate recognition. In Aim 2, the extent of 2’OMe on viral RNA will be mapped and the individual contribution of 5’ and internal modification to innate immune evasion will be dissected.
In aggregate, these aims will uncover how viral enzymes modify the termini and internal viral RNA residues and associated evasion of innate immunity. The outcome could reshape understanding of viral RNA biology, open novel research directions and lead to antiviral targets.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.