Next generation Modeling of Sedimentary Ice sheet Dynamics
Global sea level changes are grand humanitarian challenges in the 21st century and beyond. The biggest contributor and uncertainty to sea-level projections is dynamical ice-mass loss from the Antarctic Ice Sheet. Fast-moving ice p...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-114856RB-I00
IMPACTO DEL RETROCESO DEL CASQUETE GLACIAR Y CONTROLES GEOLO...
212K€
Cerrado
EROSIVE
The influence of Earth surface processes on solid Earth ice...
212K€
Cerrado
PID2020-113051RB-C31
BALANCE DE MASA, DINAMICA GLACIAR E INTERACCION GLACIAR-OCEA...
188K€
Cerrado
IceLab
Ice ocean interactions during Heinrich Events in the Labrado...
207K€
Cerrado
CTM2017-84441-R
INTERACCION TERMOMECANICA GLACIAR-OCEANO: ESTIMACION DE LAS...
212K€
Cerrado
REASSESS
Probing and predicting the dynamical response of the Greenla...
3M€
Cerrado
Información proyecto NEMOSID
Duración del proyecto: 28 meses
Fecha Inicio: 2020-02-26
Fecha Fin: 2022-06-30
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
219K€
Descripción del proyecto
Global sea level changes are grand humanitarian challenges in the 21st century and beyond. The biggest contributor and uncertainty to sea-level projections is dynamical ice-mass loss from the Antarctic Ice Sheet. Fast-moving ice primarily flows by sliding over weak and water-saturated sedimentary deposits that are reshaped into undulations and depositional wedges in the process.
Current ice-sheet models do not account for transport of sediment under ice, and commonly assume that basal friction increases if ice flow accelerates. In this project I propose to address these shortcomings by deriving a realistic coupled framework for glacier ice, water and sediment. The sediment model is constrained by laboratory experiments and is coupled to a new model of subglacial hydrology. The ice-water-sediment model is compared to landforms and sedimentary deposits from previous glaciations, as well as contemporary ice sheet flow patterns. The framework allows analysis of climate-perturbation sensitivity, with particular investigation into the dynamical evolution of ice flow and basal environment. By incorporating previously neglected processes, the developed model framework will improve the accuracy of predicted global-mean sea-level change in the future.