NEUro cerebellar recurrent network for motor SEQuence learning in neuroroBOTics
The new generation of compliant robots, designed to safely interact with humans in unstructured environments, require control systems able to naturally deal with their biological features. These robots can be efficiently controlle...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto NEUSEQBOT
Duración del proyecto: 46 meses
Fecha Inicio: 2020-02-26
Fecha Fin: 2024-01-10
Líder del proyecto
UNIVERSIDAD DE GRANADA
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores5513
Presupuesto del proyecto
246K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The new generation of compliant robots, designed to safely interact with humans in unstructured environments, require control systems able to naturally deal with their biological features. These robots can be efficiently controlled using biologically inspired control systems based on brain regions such as the cerebellum. This nucleus plays a key role in fluent body movements, being essential for adaptive motor control and coordination of body movements.
The cerebellum was traditionally modelled as a feedforward network with two inputs and one output. Nevertheless, recent experimental studies have demonstrated the existence of multiple recurrent connections in the cerebellum: 1) nucleo-cortical connections (NCCs), and 2) nucleo-olivary connections (NOCs). These recurrent connections back-propagate the cerebellar output activity to the cerebellar inputs, thus shifting the feedforward toward a recurrent approach. NEUSEQBOT project will focus on the NCCs, studying how they contribute to the motor sequence learning capabilities in the cerebellum. This multidisciplinary study will combine neuroscientific experiments in animals, cerebellar modelling and neurorobotic applications. Firstly, we will experimentally study the NCC effect in the cerebellar dynamics during reflexive eyelid movements in optogenetically modified mice. The experimental results will be used to model a recurrent cerebellum. Finally, this cerebellar model will be tested in a neurorobotic object manipulation task using a compliant robotic arm.
Within the objectives of H2020, NEUSEQBOT project aims to advance our understanding of how the cerebellum (as a recurrent network) processes the sensorimotor information to generate the required motor command sequences, applying this knowledge to develop biologically inspired control systems for neurorobotic applications with compliant robots. This work will enable the experienced researcher to enhance his position at the forefront of advances in these fields.