Understanding the molecular and genetic basis of complex quantitative traits is an important goal in genetics with wide ranging ramifications across the scientific community. Phenotypes within species are not fixed and instead hav...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Understanding the molecular and genetic basis of complex quantitative traits is an important goal in genetics with wide ranging ramifications across the scientific community. Phenotypes within species are not fixed and instead have significant levels of natural genetic variation that distinguishes individuals. This includes traits ranging from development to metabolism to pathogen resistance, with selection often maintaining the underlying genetic variation. One network that is known to be naturally variable while also having global ramifications for organisms across metabolism and development is the circadian clock. Natural variation in the circadian clock could lead to complex genotype by environment interactions, perhaps causing large effects on transcript or metabolite levels. I propose to clone three metabolic loci controlling circadian output variation in Arabidopsis and the dentification of homologous genes in B. oleracea and B. rapa.