Network analysis of bacterial multi cellular patterning
Defining the mechanisms by which cells cooperate to form complex structures and a common function is a fundamental problem in both developmental biology and socio-biology. Cooperative interactions among bacteria are a relatively s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
COMMOTS
Communication Motifs Principles of bacterial communication...
1M€
Cerrado
MBD
Mapping bacterial division in Bacillus subtilis
183K€
Cerrado
MetaboDevo
Metabolic Coupling During Bacterial Development
2M€
Cerrado
BFU2016-81742-REDT
RED TEMATICA EN BIOLOGIA DE SISTEMAS DE MICOBACTERIAS
20K€
Cerrado
MultiMEc
A multilevel integrative approach to microbial ecology from...
203K€
Cerrado
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Defining the mechanisms by which cells cooperate to form complex structures and a common function is a fundamental problem in both developmental biology and socio-biology. Cooperative interactions among bacteria are a relatively simple, yet medically important, model system where this problem can be explored in its full generality. Specifically, bacterial growth on surfaces is often accompanied by formation of complex patterns and increased resilience to diverse external insults. The importance of multiple co-existing cellular differentiated states and of specific cell signaling processes, to spatial patterning and development of bacterial communities has been demonstrated in several systems, including the well-characterized microbe, Bacillus subtilis. However, the nature of these interactions and the way they control the spatial organization of differentiation and patterning is unclear. Specifically, we do not understand (1) when and where are genes and cell fates expressed? (2) What is the spatial organization of cell fates? (3) How does the interaction between fates give rise to spatial order? Here, we suggest addressing these questions by utilizing a novel light-activated gene expression system. This will be used to control the spatial and temporal gene expression profile of a library of patterning-related genes. Time-lapse fluorescence microscopy will be used to monitor the dynamic expression of relevant reporters in wild-type and spatially perturbed backgrounds. We will use mathematical modeling to integrate the results into a predictive model of pattern formation and community development. My previous experience in mathematical modeling of spatial systems, and experimental background in developmental genetics, microbiology and advanced microscopy provides a well suited background to successfully pursue this important problem.