Nerve guidance channels based on synthetic polymer polysaccharide biomaterials
Current strategies to repair damaged axonal pathways in peripheral nervous system (PNS), besides autologous nerve grafts, have concerned the application of bridging substrates that guide axonal regeneration across the lesion site....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HYCELT
Hybrid polymer peptide hydrogels for Cell Therapy
231K€
Cerrado
MAT2015-66666-C3-3-R
RECONSTRUCCION DE LARGOS TRACTOS NEURALES EN EL SISTEMA NERV...
121K€
Cerrado
ANISOGEL
Injectable anisotropic microgel in hydrogel matrices for spi...
1M€
Cerrado
RTI2018-095872-B-C22
NUEVO DISPOSITIVO BIOACTIVO PARA LA REGENERACION DE LESIONES...
218K€
Cerrado
EsterPep
Polyester Polypeptide hybrid biomaterials for biomedical sca...
176K€
Cerrado
MAT2008-06887-C03-02
FUNCIONALIZACION DE BIOMATERIALES PARA LA PROMOCION DE LA MI...
131K€
Cerrado
Información proyecto NERVEREGENERATION
Líder del proyecto
POLITECHNIKA LODZKA
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Current strategies to repair damaged axonal pathways in peripheral nervous system (PNS), besides autologous nerve grafts, have concerned the application of bridging substrates that guide axonal regeneration across the lesion site. This IRG project is focused on the developing and evaluation of a series of novel guide channels based on biocompatible and biodegradable polymers for PNS regeneration. Natural polymers and their derivatives, and synthetic polymers: polyesters, e.g. poly(epsilon-caprolacotne), polycarbonates, e.g. poly(trimethylene carbonate), and polyester-ethers, e.g. polydioxanone will be examined in the form of blends, crosslinked and grafted material. Guidance tube manufacturing technology will include phase-inversion spinning, solution cast molding, radiation crosslinking, grafting by chemical and radiation method. Since these products are intended to be sterilized by radiation method, effects of irradiation on individual components and the complete biomaterials will be examined. In-vitro assessment of fabricated tubular guides, besides standard physicochemical tests, will include biocompatibility, biodegradability, bioactivity, etc. In-vivo animal trials of carefully chosen formerly examined in-vitro tube biomaterials are considered to be performed at collaborating institute in the final period of the project. This study will have remarkable impact on enhancement of the quality of life of EU citizens. Utilization of developed nerve guide channel implants, with tailored parameters and improved functionality, will shorten recovery period after surgery of PNS injuries and facilitate restoration of nerve functions. The new knowledge generated from this project will certainly contribute to the researcher’s career and competitiveness of EU in academic research fields as well as biomedical business, especially SME, in advanced high-technology sectors.