Nanoscale phase evolution in lithium sulfur batteries
Lithium-sulfur (Li-S) batteries are considered a strategic candidate to achieve both significantly higher energy storage and better sustainability than current Lithium-ion batteries. They operate by converting sulfur into lithium...
Lithium-sulfur (Li-S) batteries are considered a strategic candidate to achieve both significantly higher energy storage and better sustainability than current Lithium-ion batteries. They operate by converting sulfur into lithium sulfide and back on discharge/charge. However, practically achieved energies are far from theoretical values due to difficulties to load sulfur in high areal and volume density in the porous carbon cathode and to fully use it electrochemically. Current experimental techniques are strong in aspects, but fail to combine the required coverage of length scales ranging from sub-nanometers to micrometers in the crucial real-time in situ fashion.
NanoEvolution aims to i) identify nanoscale structure-transport-performance correlations, ii) understand capacity limitations and reaction mechanisms, and iii) derive design criteria for improved Li-S battery performance. To achieve these goals, structure-sensitive in situ scattering and imaging methods during electrochemically operating custom-built in situ Li-S cells will be implemented. Specifically, in situ small and wide angle X-ray scattering (SWAXS) will be established and synergistically combined with nanoscale phase evolution modelling for data analysis. In situ nanoscale X-ray tomography will be realized to achieve continuous structural sensitivity from (sub-)nanometer (SWAXS) to sub-micrometer scales (tomography).
The novel combination of modelling and structure-sensitive in situ experiments allows real-time detection of the Li2S/sulfur morphology and location within the nanoporous carbon electrode during charge and discharge, at length scales so far not accessible to other methods. This allows to determine the final cause for capacity limitation (mass transport vs. charge transport), ii) elucidate the nature of the multiple-step sulfur reduction (oxidation) reaction, and iii) derive design criteria for improved sulfur loading, capacity utilization, and power densities.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.