Nanoscale mineral microbial interactions associations and biosignatures in gyp...
Nanoscale mineral microbial interactions associations and biosignatures in gypsum stromatolites
Gypsum-based stromatolites (GS) make excellent paradigms for the investigation of fine-scale mineral-microbial interactions and for the detection of life remnants on gypsiferous deposits of Earth and Mars. Yet, they have been larg...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto NanoBioS
Duración del proyecto: 29 meses
Fecha Inicio: 2021-04-09
Fecha Fin: 2023-09-30
Líder del proyecto
UNIVERSITE PARISSACLAY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
197K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Gypsum-based stromatolites (GS) make excellent paradigms for the investigation of fine-scale mineral-microbial interactions and for the detection of life remnants on gypsiferous deposits of Earth and Mars. Yet, they have been largely overlooked compared to the carbonate microbialites. To date we do not know: i) what is their exact mineralogy, ii) which microbial communities are associated to these structures, iii) what is the exact role of microbes and related bioproducts (e.g., exopolymeric substances) in mineral precipitation and stromatolite construction, and iv) which biosignatures may be preserved in GS.
NanoBioS aims to address this knowledge gap by employing an interdisciplinary approach to study newly discovered gypsum-based stromatolites from Lake Bakili (Danakil Depression, Ethiopia) from a combined microbiology and mineralogy perspective. The Danakil Depression and the difficult-to-access and so-far unexplored Lake Bakili constitute a unique, natural laboratory for the study of both living and fossil gypsum microbialites, and a terrestrial Martian analogue-site. Besides the possibility to discover novel microbial lineages/metabolisms, we will attempt to identify characteristic associations of microbial groups with mineral assemblages and look for biosignatures. The overarching goal of NanoBioS is to gain a deeper understanding of the microbial influence on Ca-sulfate precipitation, as well as, to develop insights for distinguishing fossil life remnants from inorganic biomorphs on Earth and Martian chemical sediments.
The host and secondment host laboratories that have advanced the subject of geomicrobiology of microbialites, will offer me intensive training in cutting-edge molecular biology and mineralogic tools, complementary to my so far geochemical expertise, aside to other, transferable skills. Overall, the development of NanoBioS will be career-defining and it will transform me in an independent, highly competitive, early stage bio-geo-chemist.