Materials synthesis in vivo intracellular formation of nanostructured silica b...
Materials synthesis in vivo intracellular formation of nanostructured silica by microalgae
Organisms evolved the ability to form a magnificent array of functional materials, which surpass any man-made product. A prominent example is diatoms, marine microalgae that form an intricate cell-wall made of meso-porous silica....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DiaMorphy
Using Single-Cell Transcriptomics to identify the Diatom Sil...
174K€
Cerrado
BIOMINTEC
Biomineralization Understanding of basic mechanisms for the...
2M€
Cerrado
CMHAlgae
Multifunctional Cellulose Magnetic Hybrid CMH Nanomaterial...
161K€
Cerrado
PID2019-106165GB-C22
HACIA NUEVOS NANOMATERIALES PARA TECNOLOGIAS EMERGENTES
61K€
Cerrado
PID2020-112744GB-I00
BIOMINERALIZACION EN INTERFASES PARA HIBRIDOS PLASMONICOS
109K€
Cerrado
CTM2010-18456
IDENTIFICACION Y CARACTERIZACION DE BIOMINERALES Y NANOPARTI...
15K€
Cerrado
Información proyecto BioSilica
Duración del proyecto: 62 meses
Fecha Inicio: 2019-10-07
Fecha Fin: 2024-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Organisms evolved the ability to form a magnificent array of functional materials, which surpass any man-made product. A prominent example is diatoms, marine microalgae that form an intricate cell-wall made of meso-porous silica. Diatom silica is a tough, hierarchically built, and biocompatible material that is environmentally friendly and cheap, making it an exciting target for nanotechnology. Nevertheless, the principles of this regulated formation mechanism remain elusive.
A persistent obstacle for elucidating biomineralization processes is the inaccessibility of the cellular environment for structural and chemical investigations. Recently, far-reaching developments in electron microscopy have revolutionized our abilities to investigate chemical processes inside living organisms. It is now becoming feasible to image and analyze, with nanometer-scale resolution, an intracellular mineralization process.
This proposal aims to elucidate the intracellular mechanism of silica formation by diatoms. We will study cells undergoing the silicification process in situ, using a suite of state-of-the-art electron and X-ray imaging and spectroscopy tools. The combination of structural and chemical data will enable us to elucidate:
1) The concentration and stabilization mechanism of transient Si phases in the cell.
2) The nanoscale environment in which silica condensation takes place.
3) Genetic and environmental strategies to engineer the silicification process for designed outcomes.
Diatom silica is a promising material for applications such as photonics, pharmaceuticals, and catalysis, which require hierarchical, high-surface area, nano-materials. The achievements of this project will inspire synthetic methodologies to produce and design nano-patterned silica, and genetically-engineer the biological silicification process to produce custom-made materials.