NanoOptoMechanics in classical and quantum Liquids
Over a decade, the field of optomechanics has progressed to the point of enabling first quantum experiments on mesoscopic mechanical devices. This maturity culminates with nanoscale semiconductor systems, which operate at very hig...
Over a decade, the field of optomechanics has progressed to the point of enabling first quantum experiments on mesoscopic mechanical devices. This maturity culminates with nanoscale semiconductor systems, which operate at very high mechanical frequency and allow intense interaction between light and mechanical motion. On top of representing a new class of elementary quantum systems, nano-optomechanical devices can sense forces at small scale with high speed and resolution, down to the quantum limit. They could probe physical interactions in complex environments, like liquids, with a unique degree of control, and thus bring new science and applications.
NOMLI explores original physics at the interface of nano-optomechanics and liquids, be they classical or quantum. A first objective is to realize nano-optomechanical rheological measurements at very high frequency (GHz) and small scale (μm) in classical liquids, and investigate the solid-like behavior of liquids in previously inaccessible regimes. A second objective is to optically cool a nano-optomechanical resonator immersed in a classical liquid down to the quantum regime, and analyze mechanical decoherence in such complex environment. As third objective, a quantum liquid of light will be artificially created in a set of nonlinear photonic resonators. Its viscous force will be investigated nano-optomechanically, and monitored as the liquid undergoes the superfluid transition. Finally a new type of quantum liquid, fully optomechanical in nature, will be formed in an ensemble of resonators at ultra-low temperature. Viscosity, dynamics and superfluidity of this new phase of light and matter will be investigated, using engineered photon-photon interactions mediated by mechanical motion.
NOMLI will build a detailed picture of physical mechanisms at play, at the quantum level and at small scale, when a miniature mechanical force probe evolves in a liquid, where chemical and biological processes usually take place.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.