TIME-Varying Nanophotonics for New Regimes of QED LIGHT-Matter Interactions
Controlling light and its interaction with matter at the nanoscale is one of the major aims of current Science with applications ranging from energy-efficient photonic-based communications, quantum information processing, or high...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
2DNANOPTICA
Nano optics on flatland from quantum nanotechnology to nano...
1M€
Cerrado
FIS2013-41184-P
OPTOELECTRONICA DE GAPS (SUB)NANOMETRICOS PLASMONICOS PARA E...
166K€
Cerrado
PID2020-115221GB-C41
FOTONICA CON MATERIALES CUANTICOS Y DE ANCHURA ATOMICA
169K€
Cerrado
MAT2008-01555
OPTICA CUANTICA EN NANOESTRUCTURAS DE SEMICONDUCTORES
661K€
Cerrado
NanoEP
Enabling Novel Electron Polariton Physics with Nanophotonic...
2M€
Cerrado
PID2019-107432GB-I00
ESTUDIO DE LOS EFECTOS CUANTICOS EN NANOFOTONICA A ESCALA AT...
195K€
Cerrado
Información proyecto TIMELIGHT
Duración del proyecto: 72 meses
Fecha Inicio: 2023-09-18
Fecha Fin: 2029-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Controlling light and its interaction with matter at the nanoscale is one of the major aims of current Science with applications ranging from energy-efficient photonic-based communications, quantum information processing, or high precision sensors. Owing to the hybrid light-matter modes supported by nanophotonic structures, from THz and IR polaritons in 2D materials to optical plasmonic resonances, nanophotonics offers an ideal platform for an exquisite control of light-matter interactions even at room temperature. Light concentrated at the nanoscale is a natural playground for quantum electro-dynamical (QED) processes, whereby light-matter interactions reveal their quantum nature.
However, conventional approaches to nanophotonics-based QED are limited by two fundamental principles: energy conservation and reciprocity. Overcoming these limitations would enable non-photon conserving devices and one-way channels, opening the door to a compact route to quantum photonic circuits. TIMELIGHT proposes the use of time-modulated media, whose optical parameters (e.g., permittivity) are dynamically modulated by an external actuation, to realise fundamentally new non-Hermitian and non-reciprocal QED effects. This theoretical project roots in recent experimental advances that have shown unprecedentedly large and fast modulations of nanophotonic structures.
TIMELIGHT will deliver advances in the following areas: (1) tuning of spontaneous emission and collective interactions of quantum emitters, (2) new forms of free electron radiation, (3) novel mechanisms for enhancing spontaneous photon generation, and (4) synthetic-motion based fluctuation-induced forces. TIMELIGHT will open the door to time-varying nanophotonics as a new paradigm to tailoring light-matter interactions at room temperature with non-Hermitian and non-reciprocal effects. This will shed light in the understanding of fundamental QED processes and ultimately be of interest to quantum photonic technologies.