Nanoengineered Nanoparticles and Quantum Dots for Sensor and Machinery Applicati...
Nanoengineered Nanoparticles and Quantum Dots for Sensor and Machinery Applications
"Chemically modified metallic nanoparticles (NPs) or semiconductor quantum dots (QDs) are central components for the future development of nanotechnology and nanobiotechnology. This program aims to introduce new dimensions into th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PTQ-13-05994
Quantum Dots de Grafeno como novedosos nanomodificadores de...
83K€
Cerrado
ECNANO
Electrochemistry in fluidic nanodevices From fundamentals t...
2M€
Cerrado
PID2020-113142RB-C22
DISEÑO DE NANOMATERIALES FUNCIONALES AVANZADOS PARA SU APLIC...
99K€
Cerrado
Cross-SERS
SERS ultrasensitive universal sensing of proteins through cr...
166K€
Cerrado
TEC2010-15736
TRANSISTORES DE EFECTO DE CAMPO PREPARADOS CON PELICULAS DE...
168K€
Cerrado
DPI2008-03297
DESARROLLO DE METODOS DE MEDIDA E INSTRUMENTACION ELECTRONIC...
76K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Chemically modified metallic nanoparticles (NPs) or semiconductor quantum dots (QDs) are central components for the future development of nanotechnology and nanobiotechnology. This program aims to introduce new dimensions into the field of nanotechnology and nanobiotechnology by synthesizing, characterizing and assembling molecule- or biomolecule-modified nanoparticles (NPs)/Quantum dots (QDs) hybrid nanostructures that perform tailored and programmable functionalities. The project will include two complementary research activities. One direction will include the generation of electropolymerized ligand-functionalized Au NPs matrices on electrode surfaces. By tethering of appropriate ligands to the NPs, imprinted matrices for selective sensing, and signal-triggered NPs ""sponges"" for the selective uptake and release of substrates will be designed. Also, electrochemically induced pH changes by the NPs matrices will be used to control chemical reactivity (e.g., sol-gel transitions, activation of the ATP synthase machinery). The second research direction will implement ligand-modified QDs for the sensing of ions or molecular substrates. Similarly, nucleic acid-functionalized QDs will be used to develop new versatile sensing platforms exhibiting multiplexed analysis capabilities. One platform will include the quenching of the QDs by G-quadruplexes, whereas the second platform will use biochemiluminescence resonance energy transfer (BRET) as readout signal. Also, QDs-modified supramolecular DNA nanostructures will be designed to perform programmed machinery functions such as ""bi-pedal walker"", ""seesaw"", ""gear"" or ""tweezers"", and the machinery functions will be transduced by the optical properties of the QDs. Finally, DNA-machines that trigger the isothermal amplified replication of the analyzed nucleic acid will be designed, and QDs tethered to the machine will optically transduce the replication process at real-time."