Electrochemistry in fluidic nanodevices From fundamentals to integrated sensor...
Electrochemistry in fluidic nanodevices From fundamentals to integrated sensor platforms
I propose to explore the frontiers of electrochemistry at the nanometer scale by developing new experimental approaches based on lithographically fabricated fluidic nanodevices. This will allow groundbreaking experiments on a broa...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2011-28135
NUEVOS TRANSDUCTORES BASADOS EN NANOMATERIALES PARA SENSORIC...
96K€
Cerrado
SAMDBC
Simple Atto Molar Detection and Nanoscale Kinetics of Biomol...
231K€
Cerrado
NanoBiosens
Advancing Nanoscale Devices based on Solid-State Nanochannel...
190K€
Cerrado
NANOSENSOMACH
Nanoengineered Nanoparticles and Quantum Dots for Sensor and...
2M€
Cerrado
BES-2012-056022
NANOMATERIALES CON ALTA CAPACIDAD DE RECONOCIMIENTO MODULABL...
43K€
Cerrado
BES-2012-053777
NUEVOS TRANSDUCTORES BASADOS EN NANOMATERIALES PARA SENSORIC...
43K€
Cerrado
Información proyecto ECNANO
Líder del proyecto
UNIVERSITEIT TWENTE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
I propose to explore the frontiers of electrochemistry at the nanometer scale by developing new experimental approaches based on lithographically fabricated fluidic nanodevices. This will allow groundbreaking experiments on a broad range of fundamental topics including double layer structure, screening in ionic liquids, nanoscale hydrodynamics and the dielectric response of single macromolecules. It will also lay the foundations for new analytical techniques based on electrochemical single molecule recognition and targeted at integration with state-of-the-art electronics on a single chip. The latter combination could potentially bring about a revolution in (bio)sensing technology on a scale comparable to those which have already taken place in computing and communications. My first focus will be on nanofabricating sub-femtolitre channels and chambers in which single or small numbers of redox-active molecules can be detected and manipulated using electrochemistry at pairs of embedded electrodes. Simultaneously, I will explore the capabilities electrochemical impedance spectroscopy using nanoelectrodes at frequencies up to 200 MHz. Such a combination of ultra-short length scales and high frequencies has heretofore remained inaccessible and will be made possible here by using electrodes that form an intrinsic part of an integrated detection circuit. This research has a truly exploratory character, as few investigators so far have attempted to combine nanofluidics, modern microelectronics and electrochemistry. Doing so will test our microscopic understanding of electrochemical processes, enable new classes of experiments, and push the limits of electrochemistry as an analytical method. There is thus a high likelihood that further new concepts and applications will emerge over the course of this multidisciplinary program.