Transition metal-catalyzed C-H functionalization replaces an inert carbon-hydrogen bond with a functional group, expediently altering the properties of the parent molecule to access new classes of compounds. Although the C-H funct...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2009-13840
NUEVAS METODOLOGIAS SINTETICAS PARA LA FUNCIONALIZACION CATA...
93K€
Cerrado
CTQ2011-28258
CATALISIS ORGANOMETALICA: FUNCIONALIZACION DE ENLACES C-H
240K€
Cerrado
RTI2018-093721-B-I00
FUNCIONALIZACION CH: ACCESO SOSTENIBLE A PEPTIDOS Y COMPUES...
128K€
Cerrado
CTQ2016-78395-P
NUEVOS METODOS SOSTENIBLES DE FUNCIONALIZACION C¿H DE HETERO...
83K€
Cerrado
FarCatCH
Innovative Strategies for Unprecedented Remote C H bond Func...
1M€
Cerrado
PID2019-110385GB-I00
NUEVOS METODOS DE SINTESIS QUIMICA MEDIANTE LA FUNCIONALIZAC...
85K€
Cerrado
Información proyecto MLCat
Duración del proyecto: 59 meses
Fecha Inicio: 2022-08-01
Fecha Fin: 2027-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Transition metal-catalyzed C-H functionalization replaces an inert carbon-hydrogen bond with a functional group, expediently altering the properties of the parent molecule to access new classes of compounds. Although the C-H functionalization represents a green chemistry approach as it precludes the need for pre-functionalized starting materials, there are still two main sustainability shortcomings with most current methodologies. The first challenge is achieving functionalization of specific C-H bonds without affecting other C-H sites in the molecule. A widely employed strategy to control the selectivity of metal-catalyzed C-H bond functionalization reactions has relied upon the covalent attachment of directing groups (i.e., pyridine, oxime, diazo) to the parent molecule. The requisite installation and removal of directing groups make the overall transformation less appealing from an atom- and step-economy perspective. The second challenge is to substitute commonly used precious transition metals with more benign earth-abundant alternatives. The proposed research program will address these shortcomings by developing an innovative and more efficient way for selective metal-catalyzed functionalization of aromatic and aliphatic C-H bonds without pre-attaching a directing group. The proposed strategies will rely on the design of multifunctional ligands capable of simultaneous binding to the substrate and the transition metal catalyst. The proposed approach will take advantage of the ability of Cr(0) to form an pi-arene complex and activate the aromatic and benzylic C-H bonds. Addressing these challenges associated with C-H activation technology would have the power to unlock many industrial applications, such as valorizing fine chemicals and modifying complex natural products, drug leads, or polymers.