Multi-Attribute, Multimodal Bias Mitigation in AI Systems
Artificial Intelligence (AI) is increasingly employed by businesses, governments, and other organizations to make decisions with far-reaching impacts on individuals and society. This offers big opportunities for automation in diff...
Artificial Intelligence (AI) is increasingly employed by businesses, governments, and other organizations to make decisions with far-reaching impacts on individuals and society. This offers big opportunities for automation in different sectors and daily life, but at the same time it brings risks for discrimination of minority and marginal population groups on the basis of the so-called protected attributes, like gender, race, and age. Despite the large body of research to date, the proposed methods work in limited settings, under very constrained assumptions, and do not reflect the complexity and requirements of real world applications. To this end, the MAMMOth project focuses on multi-discrimination mitigation for tabular, network and multimodal data. Through its computer science and AI experts, MAMMOth aims at addressing the associated scientific challenges by developing an innovative fairness-aware AI-data driven foundation that provides the necessary tools and techniques for the discovery and mitigation of (multi-)discrimination and ensures the accountability of AI-systems with respect to multiple protected attributes and for traditional tabular data and more complex network and visual data. The project will actively engage with numerous communities of vulnerable and/or underrepresented groups in AI research right from the start, adopting a co-creation approach, to make sure that actual user needs and pains are at the centre of the research agenda and act as guidance to the project’s activities. A social science-driven approach supported by social science and ethics experts will guide project research, and a science communication approach will increase the outreach of the outcomes.The project aims to demonstrate through pilots the developed solutions into three relevant sectors of interest: a) finance/loan applications, b) identity verification systems, and c) academic evaluation.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.