Multi well High resolution Electrophysiology Platform
MwHresEP: Multi-well High-resolution Electrophysiology Platform
The aim of this proof-of-concept project is to make initial steps in translating the high-density microelectrode array (HD-MEA) chip technology, which has been devel...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
neuroXscales
Microtechnology and integrated microsystems to investigate n...
3M€
Cerrado
UNGR08-1E-011
Equipamiento de los nuevos laboratorios del Instituto de Neu...
359K€
Cerrado
UNGR08-1E-011
Equipamiento de los nuevos laboratorios del Instituto de Neu...
359K€
Cerrado
open-TOP
Validation of Open organ on chip Technology for End user app...
150K€
Cerrado
PiLOC
Next Generation Lab On a Chip For Advanced Diagnostics
100K€
Cerrado
UMHE10-3E-409
UNIDAD ELECTROFISIOLOGIA DE ALTO RENDIMIENTO
261K€
Cerrado
Información proyecto MwHresEP
Duración del proyecto: 19 meses
Fecha Inicio: 2017-04-28
Fecha Fin: 2018-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
MwHresEP: Multi-well High-resolution Electrophysiology Platform
The aim of this proof-of-concept project is to make initial steps in translating the high-density microelectrode array (HD-MEA) chip technology, which has been developed in the ERC project NeuroCMOS (AdG 267351, Subproject 1) into a commercial product. The project will be performed in collaboration with the spin-off company MaxWell Biosystems AG (http://www.mxwbio.com/) that has been founded after the NeuroCMOS project end by collaborators of the PI laboratory and a lab at Riken (Japan) with the purpose to commercialize the developed CMOS-based chip technology and software for neuroscientific research and industrial use in drug discovery and development. The initial steps undertaken in this PoC include (i) the development of a multi-well-plate prototype, suitable for drug discovery applications, that can host CMOS microelectrode arrays in each well. Moreover, we will (ii) develop the needed soft- and hardware to prove the feasibility of integrating the chip system prototype into cell-culture automation platforms, and we will work to (iii) obtain initial data from commercially available human induced-pluripotent-stem-cell (iPSC) -derived neurons.