The full rheological response of magnetorheological (MR) fluids will be investigated under unsteady multiaxial magnetic fields for the first time. Such fields are able to drive the MR fluid to minimum energetic states. Thus, we hy...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto MAMFRHE
Duración del proyecto: 40 meses
Fecha Inicio: 2021-04-21
Fecha Fin: 2024-09-12
Líder del proyecto
UNIVERSIDAD DE GRANADA
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores5513
Presupuesto del proyecto
246K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The full rheological response of magnetorheological (MR) fluids will be investigated under unsteady multiaxial magnetic fields for the first time. Such fields are able to drive the MR fluid to minimum energetic states. Thus, we hypothesize that the superposition of multiaxial fields will constitute a relatively easy and straightforward mechanism to optimize MR fluid performance (contrary to current optimization routes, mainly based on complex schemes to tailor MR fluid constituents). The project will assess the MR fluid behavior in both pre-yield and post-yield regimes. In the two cases, bulk rheological properties (viscoelastic moduli, viscosity and normal stresses) will be investigated in terms of the particle microscale structure and dynamics, formation of percolating particle networks at rest or (expected) lamellar structures under steady flow. To do so, the problem will be tackled firstly from a numerical point of view at the Partner Organization. MR fluids will be modelled implementing direct contact forces between particles, hydrodynamics and unsteady magnetic multiaxial interactions using Molecular and Stokesian Dynamics. Secondly, the results from these computational studies will be corroborated through experiments at the Hosting Institution using a custom-built high-speed confocal magneto-rheomicroscope. This consists of a high-speed confocal rheomicroscope coupled to a unique magnetic field generator that allows, at the same time, visual access to the sample and the generation of unsteady multiaxial fields. With this novel and comprehensive project, it is intended to open a new branch in the magnetorheology research field, testing the ability of multiaxial fields to improve MR performance and promote their exploitation in novel or current applications.