Multi Atomistic Monte Carlo Simulation of Technologically Important Crystals
In order to continue with the size reduction of transistors it is necessary to use complex implantation conditions such as amorphizing implants. Models predicting the resulting dopant profile reduce the number of experiments neces...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ENE2008-06403-C06-06
SIMULACION Y DIAGNOSIS DE DAÑO POR RADIACION EN METALES, OPT...
191K€
Cerrado
TEC2011-27701
DE LOS DEFECTOS MICROSCOPICOS INDUCIDOS POR RADIACION A SUS...
88K€
Cerrado
TOPCHEM
Topological Chemistry in Ternary Compunds
163K€
Cerrado
MACONS
A multi microscopy approach to the characterisation of Nitri...
1M€
Cerrado
PID2021-123776NB-C21
CRECIMIENTO EPITAXIAL, DOPAJE Y CARACTERIZACION DE DITELUROS...
151K€
Cerrado
M4F
MULTISCALE MODELLING FOR FUSION AND FISSION MATERIALS
7M€
Cerrado
Información proyecto MASTIC
Líder del proyecto
IMDEA MATERIALES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
| 9M€
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In order to continue with the size reduction of transistors it is necessary to use complex implantation conditions such as amorphizing implants. Models predicting the resulting dopant profile reduce the number of experiments necessary to design the best process to obtain the desired properties. In the case of development of materials for fusion applications, models are crucial since, as of today, there are no experimental facilities to reproduce the same conditions that the materials will withstand in a fusion reactor. Therefore, extrapolations must be made from different irradiation conditions (fission reactors or ion implantation). These materials are different, but the basic mechanisms are the same: production of defects, diffusion of these defects and interaction with other defects, impurities or the material microstructure. In the case of microelectronics these effects must be followed for a time scale of minutes, while in fusion it is necessary to model years of operation. Using the atomistic Object and Lattice Kinetic Monte Carlo techniques (OKMC, LKMC), tools that can achieve the scales and ranges involved, this project improves the scientific understanding, generates efficient models for technology development and provides a simulation workbench to optimize the use of SiGe, SiC (microelectronics) and Fe, FeCr (nuclear). Several atomic configurations will be included in LKMC to study the amorphous/crystalline transitions of Si-based materials and the formation of defective crystals during the transition. Binary alloys will be included in a OKMC scenario to study the evolution of defects under different conditions, to be used for SiC, SiGe and FeCr materials. Finally, parallelization techniques will improve the scope of KMC applications. The knowledge gain with this project improves the performance of last generation Si-based transistors, and the use of FeCr as a blanket material in the ITER and future DEMO project as well as other fusion reactor concepts.