Molecular mechanisms of the mechanical interaction between the cell nucleus and...
Molecular mechanisms of the mechanical interaction between the cell nucleus and the actin cytoskeleton
The cytoskeleton plays a pivotal role in growth, development, and disease by sensing mechanical stress and mediating structural remodeling and cell functional responses. The cytoskeleton, which is linked directly to the nuclear la...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NPCvalve
Beyond nucleocytoplasmic transport – Nuclear pores as self-r...
2M€
Cerrado
DICIG
Dynamic Interplay between Eukaryotic Chromosomes Impact on...
1M€
Cerrado
CROSSTALK
Opposites attract: Crosstalk between vimentin and microtubul...
1M€
Cerrado
MitoMeChAnics
Deciphering the role of surface mechanics during cell divisi...
2M€
Cerrado
EUIN2017-86302
MODELIZACION NUMERICA DE LA MECANICA CELULAR EN TEJIDOS
24K€
Cerrado
CytoskeletonCoupling
Active actin microtubule crosstalk in reconstituted systems
183K€
Cerrado
Información proyecto MiMEtiC
Duración del proyecto: 24 meses
Fecha Inicio: 2017-02-22
Fecha Fin: 2019-02-28
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
171K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The cytoskeleton plays a pivotal role in growth, development, and disease by sensing mechanical stress and mediating structural remodeling and cell functional responses. The cytoskeleton, which is linked directly to the nuclear lamina and thereby to chromatin, has recently been proposed to impact on chromatin remodeling and transcriptional activity. However, the mechanisms and biological consequences of force-dependent chromatin remodeling have remained elusive. Within this context main goals for my project are 1) to characterize nuclear rheology and stress transmission over the nuclear-cytoskeletal linkage, 2) to identify molecular mechanisms of force transmission into the nucleus and 3) to develop a numerical model of cell contractility and remodeling to systematically and quantitatively investigate the stress transmission to the nucleus to test my hypothesis that global force application to the nucleus can control nuclear mechanics, chromatin structure and transcriptional activity in a predictable, biologically meaningful way.
This interdisciplinary project, integrating both cell/molecular biology of genome regulation and bioengineering, will advance our understanding of cellular mechanosensing and mechanotransduction, and carries therefore a strong transformative potential for discovering new strategies to mitigate many diseases where the interplay of mechanics and biochemistry are critical.