Molecular machines based on coiled coil protein origami
Proteins are the most versatile and complex smart nanomaterials, forming molecular machines and performing numerous functions from structure building, recognition, catalysis to locomotion. Nature however explored only a tiny fract...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SupramolecularWires
Multicomponent supramolecular wires as a platform for the co...
166K€
Cerrado
ProNANO
Protein based functional nanostructures
2M€
Cerrado
NANOCELL
A DNA NANOtechology toolkit for artificial CELL design
1M€
Cerrado
BOTTOM-UP_SYSCHEM
Systems Chemistry from Bottom Up Switching Gating and Osci...
2M€
Cerrado
RTI2018-102212-B-I00
ENSAMBLAJE JERARQUICO DE COMPLEJOS POLIIONICOS DENDRITICOS C...
107K€
Cerrado
Información proyecto MaCChines
Duración del proyecto: 72 meses
Fecha Inicio: 2018-08-31
Fecha Fin: 2024-08-31
Líder del proyecto
KEMIJSKI INSTITUT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Proteins are the most versatile and complex smart nanomaterials, forming molecular machines and performing numerous functions from structure building, recognition, catalysis to locomotion. Nature however explored only a tiny fraction of possible protein sequences and structures. Design of proteins with new, in nature unseen shapes and features, offers high rewards for medicine, technology and science. In 2013 my group pioneered the design of a new type of modular coiled-coil protein origami (CCPO) folds. This type of de novo designed proteins are defined by the sequence of coiled-coil (CC) dimer-forming modules that are concatenated by flexible linkers into a single polypeptide chain that self-assembles into a polyhedral cage based on pairwise CC interactions. This is in contrast to naturally evolved proteins where their fold is defined by a compact hydrophobic core. We recently demonstrated the robustness of this strategy by the largest de novo designed single chain protein, construction of tetrahedral, pyramid, trigonal prism and bipyramid cages that self-assemble in vivo.
This proposal builds on unique advantages of CCPOs and represents a new frontier of this branch of protein design science. I propose to introduce functional domains into selected positions of CCPO cages, implement new types of building modules that will enable regulated CCPO assembly and disassembly, test new strategies of caging and release of cargo molecules for targeted delivery, design knotted and crosslinked protein cages and introduce toehold displacement for the regulated structural rearrangement of CCPOs required for designed molecular machines, which will be demonstrated on protein nanotweezers. Technology for the positional combinatorial library-based single pot assembly of CCPO genes will provide high throughput of CCPO variants. Project will result in new methodology, understanding of potentials of CCPOs for designed molecular machines and in demonstration of different applications.