The precise synthesis of nano-devices with tailored complex structures and properties is a requisite for their use in nanotechnology and medicine. Nowadays, the technology for the generation of these devices lacks the precision to...
The precise synthesis of nano-devices with tailored complex structures and properties is a requisite for their use in nanotechnology and medicine. Nowadays, the technology for the generation of these devices lacks the precision to determine their properties, and is accomplished mostly by trial and error experimental approaches. Bottom-up self-assembly that relies on highly specific biomolecular interactions of small and simple components, is an attractive approach for nanostructure templating.
Here, we propose to overcome aforementioned challenges by using self-assembling protein building blocks as templates for nanofabrication. In nature, protein assemblies govern sophisticated structures and functions, which are inspiration to engineer novel assemblies by exploiting the same set of tools and interactions to create nanostructures with numerous potential applications in synthetic biology and nanotechnology.
We hypothesize that we can rationally assemble a variety functional nanostructures by the logical combination of simple protein building blocks with specified properties. We propose to use a designed repeat protein scaffold for which we acquired a deep understanding of its molecular structure, stability, function, and inherent assembly properties. Only few conserved residues define the structure of the building block, which allow us to mutate its sequence to modulate assembly properties and to introduce reactive functionalities without compromising the structure of the scaffolding molecule.
First, we will design a collection of protein-based nanostructures. Then, we will introduce reactive functionalities to create hybrid nanostructures with nanoparticles, metals and electro-active molecules. Finally, these conjugates will be used to build nano-devices such as nanocircuits, catalysts and electroactive materials.
The outcome of this project will be a modular versatile platform for the fabrication of multiple protein-based hybrid functional nanostructures.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.