Molecular bases of human excitatory neurotransmitter transport across the plasma...
Molecular bases of human excitatory neurotransmitter transport across the plasma membrane
The paramount importance of human membrane proteins for life contrasts with the lack of understanding of their molecular mechanisms of function and pharmacology. This project focuses on the molecular mechanisms of one of the most...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SVNeuroTrans
Mechanisms of neurotransmitter uptake and storage by synapti...
3M€
Cerrado
gluactive
Activation Mechanism of a Glutamate Receptor
2M€
Cerrado
NeuroTrans
NEUROtransmitter TRANSporters from single molecules to huma...
4M€
Cerrado
PID2020-116589GB-I00
MECANISMOS PARA LA ACUMULACION DE NEUROTRANSMISORES EN LA VE...
242K€
Cerrado
SYNVGLUT
Vesicular glutamate transporters as molecular regulators of...
2M€
Cerrado
KARhet
Molecular architecture of heteromeric kainate receptor compl...
183K€
Cerrado
Información proyecto hEAATs
Líder del proyecto
INSTITUT PASTEUR
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The paramount importance of human membrane proteins for life contrasts with the lack of understanding of their molecular mechanisms of function and pharmacology. This project focuses on the molecular mechanisms of one of the most important and medically relevant families of neurotransmitter membrane transporters in the brain, the Human Excitatory Amino Acid Transporter (hEAAT) family. Glutamate is the main excitatory neurotransmitter in the brain and its extracellular concentration is mainly regulated by the hEAATs, which pump the transmitter into the cytoplasm of cells. This role is essential to neurological processes like memory, cognition, and learning. Importantly, glutamate can also be a potent neurotoxin and the deregulation of its extracellular levels is associated to numerous neurodegenerative and mental disorders. We aim to characterize the molecular function and pharmacology of the hEAATs using a broad multidisciplinary biophysical approach to obtain and integrate structural, energetic and dynamic information on these human membrane proteins. We will develop new methods to obtain for the first time the hEAATs in pure and stable form for rigorous biophysical analysis and generate a library of new selective compounds with pharmaceutical potential that target the transporters. This knowledge will be essential to gain a complete understanding of hEAATs function and to design new therapeutic and pharmacological strategies to alleviate the impact of common neuropathologies. Finally, the methods that we will develop for the hEAATs could be applied to other families of human membrane proteins and will help to bring our knowledge on membrane proteins to the human level.