Innovating Works

MoMeNTUM

Financiado
Modern high order numerical Methods based on No-compromise moving Voronoi Tessel...
Modern high order numerical Methods based on No-compromise moving Voronoi Tessellations: a Unified solver for continuum Mechanics MoMeNTUM aims at developing a next-generation computational code for Hyperbolic balance laws in fluid flow and solid mechanics, based on versatile unstructured Voronoi grids (polygons and polyhedra), and achieving efficiency that... MoMeNTUM aims at developing a next-generation computational code for Hyperbolic balance laws in fluid flow and solid mechanics, based on versatile unstructured Voronoi grids (polygons and polyhedra), and achieving efficiency that can be compared even with that of structured Cartesian codes. The space-time-based methods will be of high-order Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin Finite Element type, with Finite Volume auxiliary subcell stabilisation. Such a mixed formulation requires new grid generation techniques in order to be extended to moving Voronoi meshes, due to the presence of degenerate and almost-degenerate elements with short or zero-length edges. Using genuine Voronoi tessellations (i.e. nearest neighbour) is important in order to preserve the smooth dynamic connectivity rearrangement naturally emerging from the motion of Voronoi seeds in space, which is a key element for the construction of robust schemes on moving polyhedral grids. Efficiency will be achieved through new hybrid nodal/modal moving basis functions, defined on cell-aligned bounding boxes, that can heavily exploit tensor-type data storage and access patterns, usually available only in structured codes. Additionally, the schemes will be equipped with an embedded mesh generator that can synergistically interact with the computational core so that the behaviour of the on-the-fly subgrid generator for the Finite Volume subcells will be optimised, like the Voronoi grid motion, according to the local flow or stress patterns. The project is a heavily multidisciplinary effort that requires the development and implementation of new numerical solvers and new mesh generation algorithms within a single coherent software architecture, which will be packaged in an open source, massively parallel, high performance Fortran code, in the hope that it will constitute a step forward towards the wide adoption of advanced high-order methods for solving real-world continuum mechanics problems. ver más
31/12/2025
174K€
Duración del proyecto: 32 meses Fecha Inicio: 2023-04-25
Fecha Fin: 2025-12-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-04-25
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 174K€
Líder del proyecto
UNIVERSITAT ZU KOLN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5