Modern high order numerical Methods based on No-compromise moving Voronoi Tessel...
Modern high order numerical Methods based on No-compromise moving Voronoi Tessellations: a Unified solver for continuum Mechanics
MoMeNTUM aims at developing a next-generation computational code for Hyperbolic balance laws in
fluid flow and solid mechanics, based on versatile unstructured Voronoi grids (polygons and
polyhedra), and achieving efficiency that...
ver más
Descripción del proyecto
MoMeNTUM aims at developing a next-generation computational code for Hyperbolic balance laws in
fluid flow and solid mechanics, based on versatile unstructured Voronoi grids (polygons and
polyhedra), and achieving efficiency that can be compared even with that of structured Cartesian
codes. The space-time-based methods will be of high-order Arbitrary-Lagrangian-Eulerian
Discontinuous Galerkin Finite Element type, with Finite Volume auxiliary subcell stabilisation. Such
a mixed formulation requires new grid generation techniques in order to be extended to moving
Voronoi meshes, due to the presence of degenerate and almost-degenerate elements with short or
zero-length edges. Using genuine Voronoi tessellations (i.e. nearest neighbour) is important in
order to preserve the smooth dynamic connectivity rearrangement naturally emerging from the motion
of Voronoi seeds in space, which is a key element for the construction of robust schemes on moving
polyhedral grids.
Efficiency will be achieved through new hybrid nodal/modal moving basis functions, defined on
cell-aligned bounding boxes, that can heavily exploit tensor-type data storage and access
patterns, usually available only in structured codes.
Additionally, the schemes will be equipped with an embedded mesh generator that can synergistically
interact with the computational core so that the behaviour of the on-the-fly subgrid generator for
the Finite Volume subcells will be optimised, like the Voronoi grid motion, according to the local
flow or stress patterns.
The project is a heavily multidisciplinary effort that requires the development and implementation
of new numerical solvers and new mesh generation algorithms within a single coherent software
architecture, which will be packaged in an open source, massively parallel, high performance Fortran
code, in the hope that it will constitute a step forward towards the wide adoption of advanced
high-order methods for solving real-world continuum mechanics problems.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.