Modern high order numerical Methods based on No-compromise moving Voronoi Tessel...
Modern high order numerical Methods based on No-compromise moving Voronoi Tessellations: a Unified solver for continuum Mechanics
MoMeNTUM aims at developing a next-generation computational code for Hyperbolic balance laws in
fluid flow and solid mechanics, based on versatile unstructured Voronoi grids (polygons and
polyhedra), and achieving efficiency that...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ADAPTIVE
Industrial implementation of adaptive computational methods...
147K€
Cerrado
Extreme
An Exascale aware and Un crashable Space Time Adaptive Disco...
1M€
Cerrado
JCI-2009-04765
Metodos numericos aplicados a la resolucion de problemas vin...
101K€
Cerrado
MTM2014-52859-P
PROBLEMAS DE EVOLUCION: MODELOS, APLICACIONES Y NUEVAS TECNI...
57K€
Cerrado
MTM2010-16917
Estabilización y convergencia de métodos numéricos para algu...
80K€
Cerrado
PID2019-104927GB-C22
METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS,...
65K€
Cerrado
Información proyecto MoMeNTUM
Duración del proyecto: 32 meses
Fecha Inicio: 2023-04-25
Fecha Fin: 2025-12-31
Líder del proyecto
UNIVERSITAT ZU KOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
174K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
MoMeNTUM aims at developing a next-generation computational code for Hyperbolic balance laws in
fluid flow and solid mechanics, based on versatile unstructured Voronoi grids (polygons and
polyhedra), and achieving efficiency that can be compared even with that of structured Cartesian
codes. The space-time-based methods will be of high-order Arbitrary-Lagrangian-Eulerian
Discontinuous Galerkin Finite Element type, with Finite Volume auxiliary subcell stabilisation. Such
a mixed formulation requires new grid generation techniques in order to be extended to moving
Voronoi meshes, due to the presence of degenerate and almost-degenerate elements with short or
zero-length edges. Using genuine Voronoi tessellations (i.e. nearest neighbour) is important in
order to preserve the smooth dynamic connectivity rearrangement naturally emerging from the motion
of Voronoi seeds in space, which is a key element for the construction of robust schemes on moving
polyhedral grids.
Efficiency will be achieved through new hybrid nodal/modal moving basis functions, defined on
cell-aligned bounding boxes, that can heavily exploit tensor-type data storage and access
patterns, usually available only in structured codes.
Additionally, the schemes will be equipped with an embedded mesh generator that can synergistically
interact with the computational core so that the behaviour of the on-the-fly subgrid generator for
the Finite Volume subcells will be optimised, like the Voronoi grid motion, according to the local
flow or stress patterns.
The project is a heavily multidisciplinary effort that requires the development and implementation
of new numerical solvers and new mesh generation algorithms within a single coherent software
architecture, which will be packaged in an open source, massively parallel, high performance Fortran
code, in the hope that it will constitute a step forward towards the wide adoption of advanced
high-order methods for solving real-world continuum mechanics problems.