Microscopic Modelling of Excitonic Solar Cell Interfaces
Organic Photovoltaic Solar Cells and Dyes Sensitized Solar Cells (collectively referred to as Excitonic Solar Cells) are one of the major alternatives to silicon photovoltaics and the subject of the proposed investigation. The PI...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ALIGN
Ab initio computational modelling of photovoltaic interfaces
1M€
Cerrado
PHOTO-EM
Solar cells at the nanoscale imaging active photoelectrodes...
1M€
Cerrado
EXTMOC
Exciton Transport in Molecular Crystals The Role of Dynamic...
222K€
Cerrado
PHOEBUS
PHOto induced Energy flow in Bio inspired molecular circuits...
244K€
Cerrado
BES-2012-054274
DISEÑO Y SINTESIS DE NUEVOS PORFIRINOIDES COMO COMPONENTES A...
43K€
Cerrado
Información proyecto MIMESIS
Líder del proyecto
UNIVERSITY OF WARWICK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Organic Photovoltaic Solar Cells and Dyes Sensitized Solar Cells (collectively referred to as Excitonic Solar Cells) are one of the major alternatives to silicon photovoltaics and the subject of the proposed investigation. The PI s expertise in the theory of single molecule electron transport, organic electronics and condensed phase simulations will be used to build a research team that will investigate all elementary processes that take place at the interface of excitonic solar cells. For the first time within a single theoretical research team, the same attention will be paid to the morphology of the relevant interfaces, their electronic structure at an atomistic level and the computation of the rates of the elementary processes (e.g. charge separation, charge recombination, triplet formation, etc.). Although the rates of the interfacial processes are what determine ultimately the efficiency of the cell, no theoretical tool so far has been used for their prediction and to guide the synthesis of new materials. This limitation of theory is related to the intrinsic complication of electron and exciton transfer across heterogeneous interfaces whose study does not fall within the remit of a single discipline. Breaking the traditional boundaries between soft-matter and quantum chemistry simulations and between solid state theory and molecular photochemistry, the proposed research aims at providing what is thought to be the best possible theoretical description of excitonic solar cells that can be achieved in 4 years time. The proposed investigation will provide a comprehensive understanding of the relation between chemical composition and efficiency in excitonic solar cells that will serve as a reference for future investigations in the field of photovoltaic research.