Organic solar cells (OSC), a part of the larger emerging field of organic electronics, have the potential to become a very cheap, large area and flexible photovoltaic technology that can in principle scale up fast to terawatt in i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MOLESOL
All carbon platforms for highly efficient molecular wire cou...
4M€
Cerrado
ALIGN
Ab initio computational modelling of photovoltaic interfaces
1M€
Cerrado
DAMASCO
Preparation and Application of new n type Electron Acceptor...
45K€
Cerrado
PHOEBUS
PHOto induced Energy flow in Bio inspired molecular circuits...
244K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Organic solar cells (OSC), a part of the larger emerging field of organic electronics, have the potential to become a very cheap, large area and flexible photovoltaic technology that can in principle scale up fast to terawatt in installed capacity. However, to tap their potential, many questions on the scientific fundamentals need to better understood. The underlying theme of this project is advance the understanding of OSC and making OSC become a reality. To achieve this goal, the project will generate knowhow in three strands of research and bring together in stable OSC with high efficiencies: molecular p- and n-doping of organic semiconductors, structure-property relationships, and degradation mechanisms of OSC. To address these fundamental questions and carry out reliable experiments, this research will use highly purified small molecules, molecular doping technology, and the excellent control of vacuum processes for the deposition of thin organic films. These are the same technologies that made commercial organic light emitting diodes (OLEDs) a reality, and recent results for OSC point in a similar direction, showing that this unique approach not only allows for solid fundamental studies, but also world record OSC. This research will address key question of how molecular p- and n-doping works and how to improve it, how the chemical structure of molecules influences the optoelectronic properties of OSC made with them and how to derive better working molecules, how the degradation of OSC takes place and how it can be slowed down, and how to bring these results together to stable OSC with high efficiencies, and at the same time generating knowhow that is of benefit for the future of organic electronics in general.