Mesocorticolimbic System functional anatomy drug evoked synaptic plasticity...
Mesocorticolimbic System functional anatomy drug evoked synaptic plasticity behavioral correlates of Synaptic Inhibition
The mesocorticolimbic (MCL) system, extending from the ventral tegmental area (VTA) to the nucleus accumbens and prefrontal cortex, comprises a dopamine (DA) projection implicated in reinforcement learning. The MCL system is the t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ADDICTIONCIRCUITS
Drug addiction molecular changes in reward and aversion cir...
2M€
Cerrado
PRE2019-088521
DE ATRAS HACIA DELANTE: PARTICIPACION DE LA VIA CEREBELO-COR...
98K€
Cerrado
SocialNAc
Circuit and synaptic plasticity mechanisms of approach and a...
2M€
Cerrado
PCIN-2017-095
MUTANTE RARO VGLUT3 Y VULNERABILIDAD A LA ADICCION
142K€
Cerrado
SMILE
Study of the molecular and cellular mechanisms of incentive...
3M€
Cerrado
PSI2011-29181
ESTUDIO DE LOS MECANISMOS CEREBRALES DE ADQUISICION Y PERSIS...
73K€
Cerrado
Información proyecto MESSI
Líder del proyecto
UNIVERSITE DE GENEVE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The mesocorticolimbic (MCL) system, extending from the ventral tegmental area (VTA) to the nucleus accumbens and prefrontal cortex, comprises a dopamine (DA) projection implicated in reinforcement learning. The MCL system is the target of addictive substances and of drug-evoked synaptic plasticity, a cellular mechanism that may underlie the adaptive, pathological behaviors that occur after repeated drug exposure. While most previous work has focused on excitatory transmission, recent studies suggest that inhibitory transmission may play a crucial role in mediating specific functions of the MCL system. However the identity of the inhibitory synapses and circuits and the plasticity mechanisms underlying these forms of normal and pathological learning remain elusive.
We hypothesize that distinct inhibitory circuits in the MCL system mediate specific behaviors and that adaptive synaptic plasticity of these circuits are fundamental to both normal reward learning and addictive behaviors.
We will test this hypothesis using optogenetic projection targeting to characterize specific inhibitory projections, to selectively change the activity of these neurons in freely behaving animals to explore their behavioral relevance, and to identify precise circuit changes that underlie behavioral alterations after drug exposure. Taken together, the experiments we propose will not only identify the specific circuits and basic role of inhibition in mediating reward-related behaviors, but will allow us to understand how the alteration of these circuits after drugs can result in pathological behavior. Ultimately, our results will establish the importance of inhibitory synaptic transmission in the MCL system, are likely to fundamentally change current views of this important modulatory system, and will allow us to design strategies to interfere with drug-evoked synaptic plasticity to revert addictive behavior.