Medium Voltage Direct Current Electronic Transformer
More than a century ago, the invention of alternating current (AC) transformer has made AC the preferred choice over the direct current (DC) technologies. Line AC transformers are bulky but simple and reliable devices, made out of...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ENE2013-46205-C5-3-R
APLICACIONES DE LA CORRIENTE CONTINUA DE MEDIA TENSION EN SI...
36K€
Cerrado
Descripción del proyecto
More than a century ago, the invention of alternating current (AC) transformer has made AC the preferred choice over the direct current (DC) technologies. Line AC transformers are bulky but simple and reliable devices, made out of copper and iron, providing voltage adaptation and galvanic isolation in AC power systems.
Currently, DC technology is increasing its presence in AC power systems, enabled by progress in semiconductor devices and power electronics based energy conversion. DC power distribution networks can effectively support energy transformation and high penetration of distributed energy resources and energy storage integration (both increasingly being DC by nature) in future energy systems. Despite this shift towards the DC power distribution networks, DC Transformer, offering AC transformer like features (and beyond) does not exist, either conceptually or practically.
To enable the next (r)evolution in power systems, the EMPOWER project will develop the DC Transformer, a novel, flexible, highly efficient, compact, and reliable conversion principle for seamless energy routing in high-power DC distribution networks. Through a holistic approach, novel concepts, integration and optimization, we will demonstrate new design paradigms for galvanically-isolated power conversion. Our approach relies on resonant conversion utilizing high-voltage semiconductor devices in combination with high-frequency magnetic materials. We propose a new approach for the DC Transformer, avoiding active power flow control and instead utilizing control effort for the safety and protection. The DC Transformer will unify functions of a power converter and a protection device into a single power electronics system, improving drastically the conversion efficiency, reliability and power density in future DC power distribution networks. The success of this project will place Europe at the edge of reliable, efficient and safe energy distribution and transmission technologies.