Innovating Works

PRO-CLEAR

Financiado
Mechanisms for the selective clearance of chemically damaged proteins in mammali...
Cellular homeostasis and survival critically depend on the ability to remove misfolded and damaged proteins. In cells, proteins are continuously exposed to reactive metabolites which introduce modifications such as oxidation, carb... Cellular homeostasis and survival critically depend on the ability to remove misfolded and damaged proteins. In cells, proteins are continuously exposed to reactive metabolites which introduce modifications such as oxidation, carbonylation, glycation or carbamylation. Such non-enzymatic post-translational modifications (nePTM) can irreversibly block critical interaction surfaces or reactive sites and thus pose a constant threat to proteome integrity. In line with this view, levels of nePTM are increased in diseased and aged tissues. In contrast, nePTM-bearing proteins are selectively degraded in healthy cells, suggesting the existence of a so far unknown pathway that recognizes and eliminates nePTM-bearing proteins. In this project, I will study the impact of nePTMs on protein turnover and explore the underlying molecular mechanisms. More specifically, I plan to (I) establish a reporter assay to monitor the degradation of proteins displaying individual amino acid modifications in human cells. This will allow to test effects of common nePTMs and to identify the precise chemical adducts that induce protein clearance. Aim (II) is to uncover the cellular machinery that mediates nePTM-triggered protein degradation. To this end, I will perform a genome-wide CRISPR screen for genes required to eliminate a fluorescent model substrate. Aim (III) of the project is to understand the mechanisms underlying the recognition and clearance of nePTMs. I will therefore characterize one newly identified mediator of nePTM-clearance in detail and test its ability to bind, degrade or modify nePTM-bearing proteins and will study the impact of its knockout on the turnover of endogenous proteins. Together these experiments promise to uncover a novel pathway for the quality control of chemically damaged proteins which will form the basis for understanding its role in physiology and human disease. ver más
31/08/2023
191K€
Duración del proyecto: 37 meses Fecha Inicio: 2020-07-16
Fecha Fin: 2023-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-08-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 191K€
Líder del proyecto
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH No se ha especificado una descripción o un objeto social para esta compañía.