Mechanics-tailored Functional Ceramics via Dislocations
Advanced functional ceramics play an indispensable role in our modern society and they are typically engineered by point defects or interfaces. The potential of dislocations (one-dimensional atomic distortions) in functional ceram...
Advanced functional ceramics play an indispensable role in our modern society and they are typically engineered by point defects or interfaces. The potential of dislocations (one-dimensional atomic distortions) in functional ceramics has been greatly underestimated until most recently. Exciting proofs-of-concept have been demonstrated for dislocation-tuned functionality such as electrical conductivity, superconductivity, and ferroelectric properties, revealing a new horizon of dislocation technology in ceramics for a wide range of next-generation applications from sensors, actuators to energy converters.
However, it is widely known that ceramics are hard (difficult to deform) and brittle (easy to fracture), making it a great challenge to tailor dislocations in ceramics. This pressing bottleneck hinders the dislocation-tuned functionality and the true realization of dislocation technology.
To break through this bottleneck, MECERDIS employs mechanics-guided design coupled with external fields (thermal, light illumination, electric field) to manipulate the 3 most fundamental factors of dislocation mechanics: nucleation, multiplication, and motion. These external fields greatly impact the charged dislocation cores in ceramics and open new routes for mechanical tuning. With these novel approaches, MECERDIS aims to generate, control, and stabilize dislocations in large plastic volumes up to mm-size with high density up to 10^15/m^2 to allow large-scale preparation for functionality assessment. Another essential benefit is, dislocations are an effective tool to combat the brittleness of ceramics by improving the damage tolerance and fracture toughness.
MECERDIS will not only fulfil the key prerequisite of dislocation-tuned functionality but also secure the mechanical integrity and operational stability of future dislocation-based devices. With its success, MECERDIS will define a new paradigm of engineering functional ceramics using mechanics and dislocations.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.