Mathematics and Numerics of Infinite Quantum Systems
The purpose of the project is to study linear and nonlinear models arising in quantum mechanics and which are used to describe
matter at the microscopic and nanoscopic scales. The project focuses on physically-oriented questions (...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2010-15127
MODELIZACION COMPUTACIONAL DE ESTADOS NO LIGADOS EN FISICA A...
208K€
Cerrado
FIS2009-07880
FENOMENOS NO LINEALES Y NANOSISTEMAS CUANTICOS. APLICACIONES...
73K€
Cerrado
MTM2013-43820-P
GRUPOS CUANTICOS, SIMETRIAS DE POISSON-LIE Y SISTEMAS INTEGR...
33K€
Cerrado
MAT2017-82639-P
TRANSPORTE EN MATERIALES CUANTICOS EN LA NANOESCALA
85K€
Cerrado
FIS2010-18132
ESTRUCTURA, ESPECTROSCOPIA Y DINAMICA DE MOLECULAS Y AGREGAD...
73K€
Cerrado
FIS2011-29596-C02-02
ESTRUCTURA, ESPECTROSCOPIA Y DINAMICA DE MOLECULAS Y AGREGAD...
21K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The purpose of the project is to study linear and nonlinear models arising in quantum mechanics and which are used to describe
matter at the microscopic and nanoscopic scales. The project focuses on physically-oriented questions (rigorous derivation of a
given model from first principles), analytic problems (existence and properties of bound states, study of solutions to timedependent
equations) and numerical issues (development of reliable algorithmic strategies). Most of the models are nonlinear and
describe physical systems possessing an infinite number of quantum particles, leading to specific difficulties.
The first part of the project is devoted to the study of relativistic atoms and molecules, while taking into account quantum
electrodynamics effects like the polarization of the vacuum. The models are all based on the Dirac operator.
The second part is focused on the study of quantum crystals. The goal is to develop new strategies for describing their behavior in
the presence of defects and local deformations. Both insulators, semiconductors and metals are considered (including graphene).
In the third part, attractive systems are considered (like stars or a few nucleons interacting via strong forces in a nucleus). The
project aims at rigorously understanding some of their specific properties, like Cooper pairing or the possible dynamical collapse of
massive gravitational objects.
Finally, the last part is devoted to general properties of infinite quantum systems, in particular the proof of the existence of the
thermodynamic limit