Mathematical and computational foundations for modeling cerebral fluid flow.
Your brain has its own waterscape: whether you are reading or sleeping, fluid flows through the brain tissue and clears waste in the process. These physiological processes are crucial for the well-being of the brain. In spite of t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DINUMA
Development of an integrated numerical model of the intra cr...
187K€
Cerrado
BREATHE
Unlocking vital mysteries in respiratory biomechanics
2M€
Cerrado
MATHCARD
Mathematical Modelling and Simulation of the Cardiovascular...
2M€
Cerrado
PID2020-115961RB-C31
ESTUDIO EXPERIMENTAL DEL FLUJO DE LIQUIDO CEFALORRAQUIDEO EN...
169K€
Cerrado
HI-SiMed
Hemodynamics in an Infarcted heart from multi physics Simul...
166K€
Cerrado
MULTI-SOFT
Multi-scale and Multi-physics Modelling of Soft Tissues
Cerrado
Información proyecto Waterscales
Duración del proyecto: 73 meses
Fecha Inicio: 2017-02-17
Fecha Fin: 2023-03-31
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Your brain has its own waterscape: whether you are reading or sleeping, fluid flows through the brain tissue and clears waste in the process. These physiological processes are crucial for the well-being of the brain. In spite of their importance we understand them but little. Mathematics and numerics could play a crucial role in gaining new insight. Indeed, medical doctors express an urgent need for multiscale modeling of water transport through the brain, to overcome limitations in traditional techniques. Surprisingly little attention has been paid to the numerics of the brain's waterscape however, and fundamental knowledge is missing.
In response, the Waterscales ambition is to establish the mathematical and computational foundations for predictively modeling fluid flow and solute transport through the brain across scales -- from the cellular to the organ level. The project aims to bridge multiscale fluid mechanics and cellular electrophysiology to pioneer new families of mathematical models that couple macroscale, mesoscale and microscale flow with glial cell dynamics. For these models, we will design numerical discretizations that preserve key properties and that allow for whole organ simulations. To evaluate predictability, we will develop a new computational platform for model adaptivity and calibration. The project is multidisciplinary combining mathematics, mechanics, scientific computing, and physiology.
If successful, this project enables the first in silico studies of the brain's waterscape across scales. The new models would open up a new research field within computational neuroscience with ample opportunities for further mathematical and more applied study. The processes at hand are associated with neurodegenerative diseases e.g. dementia and with brain swelling caused by e.g. stroke. The Waterscales project will provide the field with a sorely needed, new avenue of investigation to understand these conditions, with tremendous long-term impact.