Development of an integrated numerical model of the intra cranial space includi...
Development of an integrated numerical model of the intra cranial space including the brain parenchyma blood flow and cerebrospinal fluid for clinical application
This research project aims at developing an integrated numerical model of the intra-cranial space necessary for a better understanding of cerebral mechanics under normal and disease conditions. This model will address the key shor...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-115961RB-C32
ANALISIS NUMERICO E INTEGRAL DEL FLUJO DEL LIQUIDO CEFALORAQ...
127K€
Cerrado
DiscSim
Multi scale biomechanical modelling and simulation of the in...
253K€
Cerrado
Waterscales
Mathematical and computational foundations for modeling cere...
2M€
Cerrado
BIOFRAC
Modelling of fracture in soft biological tissues
173K€
Cerrado
PID2020-115961RB-C31
ESTUDIO EXPERIMENTAL DEL FLUJO DE LIQUIDO CEFALORRAQUIDEO EN...
169K€
Cerrado
Información proyecto DINUMA
Líder del proyecto
University of Zurich
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
187K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This research project aims at developing an integrated numerical model of the intra-cranial space necessary for a better understanding of cerebral mechanics under normal and disease conditions. This model will address the key short comings of the current strategies, namely the lack of integration between structural and fluid components and the discrepancies between the parenchymal deformations under large or small strain rates.
To reconcile the different mechanical behaviors reported in literature for the brain parenchyma, we propose a bottom-up approach, wherein we first reproduce the parenchymal microscopic structure, considered as a fluid-filled network of viscoelastic fibers, and then propagate the micro-scale fiber deformations to capture large-scale motion. We then integrate the parenchyma within its physiologic environment by coupling our structural model with fluid dynamics simulations of the cerebrospinal fluid and cerebral blood flow. All developments will be conducted in synergy with in vitro experiments to validate our modeling strategies.
Finally, in the application phase we demonstrate the strength and benefits of out integrated model, focusing on two specific research questions: 1) the mechanisms responsible for the enlargement of the ventricles in normal pressure hydrocephalus, and 2) the correlation between the apparent parenchymal compliance and risk of secondary traumatic brain injury. Such an integrated numerical tool also provides an ideal setting for the design and preliminary testing of medical devices, and will be incorporated into the on-going effort of the host institution to improve shunting technologies for patients with normal pressure hydrocephalus (SNSF Grant K-32K1_120531).
The proposed developments and applications take advantage of the strong theoretical and modeling skills of the applicant, the expertise of the host institution in cerebral and porous material modeling, and both parties’ experience in applied biomedical research.