Massive parallel de novo design of sensing nanopores
Proteins embedded in membranes play key roles in maintaining cell integrity, homeostasis and communication. Emerging technologies (nanopore sequencing, synthetic cells, …) imitate biological systems and repurpose membrane protein...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PGC2018-097359-B-I00
NANOESTRUCTURAS POROSAS DE INSPIRACION BIOLOGICA: ANALISIS Y...
54K€
Cerrado
MAT2015-65011-P
NANOFLUIDICA DE POROS BIOMIMETICOS: NUEVAS APLICACIONES EN C...
47K€
Cerrado
MAT2009-07747
FENOMENOS DE TRANSPORTE EN NANOPOROS SINTETICOS CON NUEVAS P...
52K€
Cerrado
BIO2009-09694
NANOBIOTECNOLOGIA DE BIOMEMBRANAS. APLICACION AL ESTUDIO DE...
378K€
Cerrado
PID2019-111649RB-I00
INGENIERIA DE PROTEINAS PARA GENERAR HERRAMIENTAS AVANZADAS...
175K€
Cerrado
CTQ2013-43264-R
NUEVAS TERAPIAS SUPRAMOLECULARES DIRIGIDAS A LAS MEMBRANAS L...
175K€
Cerrado
Información proyecto PoreMADNeSS
Duración del proyecto: 65 meses
Fecha Inicio: 2023-10-18
Fecha Fin: 2029-03-31
Líder del proyecto
VIB VZW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Proteins embedded in membranes play key roles in maintaining cell integrity, homeostasis and communication. Emerging technologies (nanopore sequencing, synthetic cells, …) imitate biological systems and repurpose membrane protein for the transport and sensing of new analytes through synthetic membranes. These applications have fuelled the demand for (synthetic) membrane proteins with properties and functions not observed in nature. Structure-based computational protein design is revolutionizing many aspects of biotechnology but has almost exclusively focused on protein folding in water. The aim of PoreMADNeSS is to develop innovative strategies to enable the design of transmembrane β-barrels (TMBs), a class of membrane proteins with excellent properties to act as nanopore sensors. Using multidisciplinary approaches, we will address basic biophysical knowledge gaps that currently limit TMB design. The design of TMB folding in synthetic membranes gives access to a wealth of TMB sequences and structures not sampled by nature because of constraints associated with biogenesis and with the composition of biomembranes. We propose a combination of massive parallel de novo design and adaptive machine learning to explore this unknown TMB space, to gain crucial insight into the determinants of TMB folding and to develop robust design methods. As a proof-of-concept, PoreMADNeSS will focus on the design of steroid sensing nanopores. Our strategy is to design a cortisol binding site across the transmembrane channel, which would act as the reading head for single molecule fingerprinting. My lab was first to demonstrate the feasibility of TMB design and has established a design pipeline from computation to electrophysiology and biochemical characterization. This project has all the components to translate into transformative advances in nanopore sensing and sequencing by providing the nanopore R&D community with accurate and innovational computational design methodologies.