Mapping structural variation on native chromosomal DNA a single molecule appro...
Mapping structural variation on native chromosomal DNA a single molecule approach
This proposal seeks to utilize single molecule optical detection to directly visualize and analyze genome structural and copy number variation (SVs & CNVs) spanning up to hundreds kb of native chromosomal DNA . The project focuse...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FLUOROCODE
FLUOROCODE a super resolution optical map of DNA
2M€
Cerrado
SAF2010-17272
INVESTIGACION EN VARIANTES ESTRUCTURALES DEL GENOMA IMPLICAD...
145K€
Cerrado
UNMA08-1E-018
Systema WAVE® 4500 HS para el análisis genético de alta sens...
167K€
Cerrado
UNMA08-1E-018
Systema WAVE® 4500 HS para el análisis genético de alta sens...
167K€
Cerrado
BEADSONSTRING
Beads on String Genomics Experimental Toolbox for Unmasking...
2M€
Cerrado
TECHGENE
High throughput molecular diagnostics in individual patients...
4M€
Cerrado
Información proyecto DNALIGHTMAP
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal seeks to utilize single molecule optical detection to directly visualize and analyze genome structural and copy number variation (SVs & CNVs) spanning up to hundreds kb of native chromosomal DNA . The project focuses on a pathogenic macro satellite repeat in the subtelomere of chromosome 4q that is linked to the third most common inherited muscular dystrophy, Facioscapulohumeral muscular dystrophy (FSHD). Specific sequences on subtelomeres are labeled with fluorescent molecules via enzymatic reactions to create a unique, chromosome specific fluorescence pattern. The DNA is then stretched in thousands of parallel nanochannels by electrophoresis and imaged on a fluorescence microscope. The resulting patterns along the DNA backbone are compared to a reference map computed from the known genome sequence and variations from the reference are classified and characterized. Specifically, we will be able to count the exact number of repeat blocks in pathogenic vs. non-pathogenic chromosomes. The immediate outcome of this project is a powerful diagnostic tool for FSHD and a proof of principle for single molecule, high throughput structural variation analysis on a genomic scale.