Managing Mobility Data Quality for Location of Things
Location of Things (LoT) is an Internet of Things paradigm for mobility analytics. In LoT, massive mobility data is being gathered, processed and transmitted among heterogeneous data nodes in a decentralized architecture. Traditio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MobiSpaces
New data spaces for green mobility
9M€
Cerrado
BigClouT
Big data meeting Cloud and IoT for empowering the citizen cl...
1M€
Cerrado
SMARTER
A Scalable and Elastic Platform for Near Realtime Analytics...
171K€
Cerrado
PID2020-119461GB-I00
QOSDATA: RESOURCE AWARE DATA MANAGEMENT FOR DISTRIBUTED SMAL...
166K€
Cerrado
Teraki
Making Big Data Small for the Internet of Things
71K€
Cerrado
PID2020-119461GB-I00
QOSDATA: RESOURCE AWARE DATA MANAGEMENT FOR DISTRIBUTED SMAL...
166K€
Cerrado
Información proyecto MALOT
Duración del proyecto: 28 meses
Fecha Inicio: 2020-03-25
Fecha Fin: 2022-07-28
Líder del proyecto
AALBORG UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
219K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Location of Things (LoT) is an Internet of Things paradigm for mobility analytics. In LoT, massive mobility data is being gathered, processed and transmitted among heterogeneous data nodes in a decentralized architecture. Traditional centralized data quality management techniques cannot cope with such characteristics of LoT, making the management of data quality for LoT a prominent challenge. In the project MALOT, the researcher aims at designing a set of new techniques that are particularly adaptive to the decentralized and heterogeneous LoT architecture for assessing and enhancing mobility data quality. Specifically, the research actions of MALOT include (1) a core model for assessing mobility data quality at decentralized and dynamic data nodes; (2) effective quality-aware data enhancement algorithms to handle the heterogeneity and inconsistency of LoT mobility data; (3) a mechanism for scheduling quality management tasks among relevant nodes in an efficiency-optimal fashion. With the research actions dedicated to decentralized modelling, heterogeneous data integration, and mobile task planning, MALOT will firmly strengthen the researcher's scientific skills and innovative competences. Through many inter-sectoral training and communication activities planned for the project, the researcher will have great opportunities to diversify his skillsets and enhance his future career prospects. A two-way knowledge transfer is guaranteed since MALOT combines the researcher's expertise in mobility analytics and the participating organizations' expertise in big data management and decentralized information systems. Committed to the mobility data quality management for IoT-like architecture, MALOT is not only expected to benefit the academic development of the host and the researcher but will contribute to Europe's IoT innovation and applications.