Machine learning for diagnosis of bipolar disorder detection of physiological d...
Machine learning for diagnosis of bipolar disorder detection of physiological digital biomarkers
Bipolar disorder (BD) is a chronic and debilitating mental disorder, that affects 2-3% of the population. It impacts quality of life, cognition, and is a leading cause of suicide and all-cause mortalities. Most patients are taken...
Bipolar disorder (BD) is a chronic and debilitating mental disorder, that affects 2-3% of the population. It impacts quality of life, cognition, and is a leading cause of suicide and all-cause mortalities. Most patients are taken into clinical care during acute episodes, which puts the burden on psychiatrists to make fast, yet accurate diagnostic decisions. However, unlike most medical conditions, psychiatric diagnoses are subjective. This paired with the complexity of its clinical presentation, BD is the most misdiagnosed and underdiagnosed psychiatric condition. More objective scales used in research lack clinical application, due to time constraints and high burden on the patient. AI-DIAGNOSE wants to disrupt the state of the art of BD diagnosis through a completely novel approach: developing an automatized and fast tool for objective detection of BD and psychotic symptoms based on physiological audiovisual biomarkers and machine learning (ML). The timing of the project is supported through recent evidence, from the host, the applicant, and others, showing that speech and eye movement are promising physiological biomarkers. In a pilot study, I found that ML algorithms based on speech patterns could predict the presence of psychiatric diagnosis, and differentiate patients with and without psychosis. Eye‐tracking datasets provide insights regarding information processing patterns, and have shown potential as diagnostic biomarkers. Although eye movement and speech patterns are promising biomarkers as they can be acquired fast and without putting high burden on the patient, they have not been combined yet for psychiatric diagnostic purposes. The project will be the first to develop such a multi-modal ML diagnostic tool for BD and psychosis in BD. We will test its accuracy against the research gold standard in the field within a large patient cohort (140 patients, 70 controls). If successful, this will a major step towards precision medicine within BD and psychiatryver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.