A novel and accurate emotion recognition system for real-time and continuous pat...
A novel and accurate emotion recognition system for real-time and continuous patient monitoring in psychiatry
150M people suffer from mental disorders in Europe & this number is sharply increasing. There are not enough psychiatrists to cope with the situation: a psychiatrist sees 1,000 patients in sessions separated every 3-4 months. Psyc...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Doctomatic
Development of advanced AI algorithms for remote patient mon...
75K€
Cerrado
ARCHANGEL
Advanced Remote Continuous patient Health mANaGemEnt SoLutio...
3M€
Cerrado
TED2021-131401B-C21
TRANSFORMACION DIGITAL DEL SECTOR DE LA PSICOLOGIA: SISTEMA...
133K€
Cerrado
HumanITcare
Revolutionizing remote care of chronic disease patients – an...
4M€
Cerrado
Duración del proyecto: 24 meses
Fecha Inicio: 2023-10-19
Fecha Fin: 2025-10-31
Líder del proyecto
CEPHALGO
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
4M€
Descripción del proyecto
150M people suffer from mental disorders in Europe & this number is sharply increasing. There are not enough psychiatrists to cope with the situation: a psychiatrist sees 1,000 patients in sessions separated every 3-4 months. Psychiatrists have no way to know if a patient's treatment is working and if there is any risk of relapse/suicide between sessions. A patient's emotional status gives insights into treatment effectiveness and diagnosis of major depressive disorder, but there are no accurate tools to monitor emotions remotely and continuously.
Cephalgo has solved this challenge & developed the first accurate, remote & continuous emotion tracker to monitor treatment effectiveness, and predict the best course of treatment for a given patient profile. Combining electroencephalography (EEG), & an AI-driven emotion recognition algorithm, our device detects emotions with 88% accuracy & predicts the best treatment to reduce the trial & error approach currently employed in psychiatry.