Low cost Reliable Indoor Positioning in Smart Factories
We are clearly on the verge of Industry 4.0. The European Commission is investing on European Industry digitalisation not only to improve competitiveness but also to reach climate-neutrality. Indoor Positioning (IP) will play a ke...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ORIENTATE
Duración del proyecto: 29 meses
Fecha Inicio: 2021-03-05
Fecha Fin: 2023-08-31
Líder del proyecto
UNIVERSIDADE DO MINHO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
160K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We are clearly on the verge of Industry 4.0. The European Commission is investing on European Industry digitalisation not only to improve competitiveness but also to reach climate-neutrality. Indoor Positioning (IP) will play a key role in Industry 4.0 by, for instance, supporting unmanned vehicles navigation or tracking goods within the value chain. Despite there are already technologies coping with the technical requirements for IP in industrial environments, they present drawbacks that might prevent its usage. Moreover, a direct comparison of the current IP technologies is not possible due to the diversity of scenarios used in empirical evaluation. This project aims to provide a significant contribution to Industrial IP by: i) proposing a new scalable high-accurate solution; ii) dynamically integrating multiple IP technologies; iii) creating an open evaluation framework. From the methodological point of view, a novel solution -based on Visible-Light Communications principles- will be proposed. Moreover, data provided by positioning modules will be processed with neural networks and local outlier factor to detect anomalous behaviour. Trusted positioning information will be coded as hyperspectral images to allow dynamic sensor fusion through Deep Neural Networks. Finally, the Experienced Researcher, with the support of 3 industrial partners and 12 international researchers, will agree an evaluation framework for Industrial IP. The project outcomes will contribute to the IP community with significant advances to the state-of-the-art solutions and, specially, with a new open evaluation framework and generated datasets. The Experienced Researcher will emerge from the project with acquired multidisciplinary competences necessary to conduct high-impact research projects and deliver high-level consultancy services. Thus, it will grant the ER the capacity of achieving maturity and independence on Industrial IP, a research area with great growth potential.