A critical component of computational processing of data sets is the `preprocessing' or `compression' step which is the computation of a \emph{succinct, sufficiently accurate} representation
of the given data. Preprocessing is...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto LOPRE
Duración del proyecto: 76 meses
Fecha Inicio: 2018-12-17
Fecha Fin: 2025-04-30
Líder del proyecto
HOGSKULEN PA VESTLANDET
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A critical component of computational processing of data sets is the `preprocessing' or `compression' step which is the computation of a \emph{succinct, sufficiently accurate} representation
of the given data. Preprocessing is ubiquitous and a rigorous mathematical understanding of preprocessing algorithms is crucial in order to reason about and understand the limits of preprocessing.
Unfortunately, there is no mathematical framework to analyze and objectively compare two preprocessing routines while simultaneously taking into account `all three dimensions' --
-- the efficiency of computing the succinct representation,
-- the space required to store this representation, and
-- the accuracy with which the original data is captured in the succinct representation.
``The overarching goal of this proposal is the development of a mathematical framework for the rigorous analysis of preprocessing algorithms. ''
We will achieve the goal by designing new algorithmic techniques for preprocessing, developing a framework of analysis to make qualitative comparisons between various preprocessing routines based on the criteria above and by developing lower bound tools required
to understand the limitations of preprocessing for concrete problems.
This project will lift our understanding of algorithmic preprocessing to new heights and lead to a groundbreaking shift in the set of basic research questions attached to the study of preprocessing for specific problems. It will significantly advance the analysis of preprocessing and yield substantial technology transfer between adjacent subfields of computer science such as dynamic algorithms, streaming algorithms, property testing and graph theory.