Innovating Works

LINCE

Financiado
Light INduced Cell control by Exogenous organic semiconductors
LINCE will develop light-sensitive devices based on organic semiconductors (OS) for optical regulation of living cells functions. The possibility to control the activity of biological systems is a timeless mission for neuroscienti... LINCE will develop light-sensitive devices based on organic semiconductors (OS) for optical regulation of living cells functions. The possibility to control the activity of biological systems is a timeless mission for neuroscientists, since it allows both to understand specific functions and to manage dysfunctions. Optical modulation provides, respect to traditional electrical methods, unprecedented spatio-temporal resolution, lower invasiveness, and higher selectivity. However, the vast majority of animal cells does not bear specific sensitivity to light. Search for new materials capable to optically regulate cell activity is thus an extremely hot topic. OS are ideal candidates, since they are inherently sensitive to visible light and highly biocompatible, sustain both ionic and electronic conduction, can be functionalized with biomolecules and drugs. Recently, it was reported that polymer-mediated optical excitation efficiently modulates the neuronal electrical activity. LINCE will significantly broaden the application of OS to address key, open issues of high biological relevance, in both neuroscience and regenerative medicine. In particular, it will develop new devices for: (i) regulation of astrocytes functions, active in many fundamental processes of the central nervous system and in pathological disorders; (ii) control of stem cell differentiation and tissue regeneration; (iii) control of animal behavior, to first assess device biocompatibility and efficacy in vivo. LINCE tools will be sensitive to visible and NIR light, flexible, biocompatible, and easily integrated with any standard physiology set-up. They will combine electrical, chemical and thermal stimuli, offering high spatio-temporal resolution, reversibility, specificity and yield. The combination of all these features is not achievable by current technologies. Overall, LINCE will provide neuroscientists and medical doctors with an unprecedented tool-box for in vitro and in vivo investigations. ver más
31/08/2025
IIT
2M€
Duración del proyecto: 80 meses Fecha Inicio: 2018-12-12
Fecha Fin: 2025-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2018-12-12
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-STG: ERC Starting Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5