Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neur...
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Understanding and modulating neural networks requires high-resolution acquisition of neural activity over time, real-time analysis, and minimally invasive stimulation methods with high specificity. Such procedures are particularly...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MINIGRAPH
Minimally Invasive Neuromodulation Implant and implantation...
4M€
Cerrado
MAT2015-69967-C3-1-R
DESARROLLO, OPTIMIZACION Y VALIDACION DE NUEVOS MATERIALES Y...
109K€
Cerrado
NeMoFoil
NeMoFoil electronic foil for neuromonitoring
149K€
Cerrado
Outer-Ret
Non-invasive patterned electrical neurostimulation of the re...
3M€
Cerrado
REFLEX
High Resolution Reduced Energy Flexible Electronics for Enh...
191K€
Cerrado
PLEC2022-009232
BrainGraph: Neurotecnología basada en grafeno para monitoriz...
327K€
Cerrado
Información proyecto aTONE
Duración del proyecto: 59 meses
Fecha Inicio: 2023-11-01
Fecha Fin: 2028-10-31
Líder del proyecto
UNIVERSITEIT GENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Understanding and modulating neural networks requires high-resolution acquisition of neural activity over time, real-time analysis, and minimally invasive stimulation methods with high specificity. Such procedures are particularly needed for treatment of sensory disfunction (e.g. hearing loss), and certain neurological diseases (e.g. epilepsy). The lack of soft, biocompatible, hybrid and smart neural interfaces hinders our capacity to study complex neural dynamics and efficiently apply responsive neuro-modulation therapy. Here, the overall objective is to exploit novel ion gated transistors (IGTs) and organic light emitting diodes (OLEDs) to establish the first fully implantable, biocompatible, and soft responsive electro-optical neurostimulation system in an animal model. I hypothesize that organic electronics can create all the required building blocks, from an IGT-based application-specific integrated circuit that will improve the efficiency of neural signal acquisition and permit local processing, to OLED-based optogenetics, through a conformable self-contained package. Such a system will increase signal-to-noise ratio (>25dB), resolution (>1500 interfaces/cm2), and spatial specificity (con-formable OLEDs for optogenetics) compared to existing state-of-the-art neurostimulation devices such as cochlear implants. To achieve that, we will have to design smart fabrication routes that allow the development of both devices into a single front-end probe, overcome stability issues, and create efficient and fast IGTs for both front-end interfaces and circuits. We will do that by tuning materials composition, engineering improved designs and better understand the mechanisms of interaction with the physiological environment. This research will enable a new generation of neural interfaces and a deeper understanding of auditory neural networks, and the electro-optical stimulation effects upon them.