Learning to Design Sweet Renewable Hydrogels - Development of Experimental Proto...
Learning to Design Sweet Renewable Hydrogels - Development of Experimental Protocols and Deep Learning Models to Decode Complex Structure-Function Relatioships
Gels are 3D entangled polymer or particle networks that present, simultaneously, solid and liquid-like properties. Gels are widely present in daily life products such as contact lenses, food thickeners, platforms for drug delivery...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-115916GB-I00
PREPARACION SOSTENIBLE DE HIDROGELES SUPERPOROSOS CON BIODEG...
91K€
Cerrado
PRE2020-094368
HIDROGELES BIOMIMETICOS IMPRIMIBLES CON PRESENTACION DE FACT...
99K€
Cerrado
ClickBioGel
Bio-based Hydrogels by Click Chemistry for Cartilage Tissue...
189K€
Cerrado
MAT2011-24306
HIDROGELES BIOMOLECULARES - DE SUS ESTRUCTURAS Y DINAMICAS S...
90K€
Cerrado
PID2021-125257OB-I00
HIDROGELES TERMOSENSIBLES PARA APLICACIONES EMERGENTES EN IN...
139K€
Cerrado
CTQ2013-48995-C2-1-R
BIOMODIFICACION DE PAPELES PARA LA CONSTRUCCION DE DISPOSITI...
183K€
Cerrado
Información proyecto Sweet2Gel
Duración del proyecto: 24 meses
Fecha Inicio: 2022-05-17
Fecha Fin: 2024-06-15
Descripción del proyecto
Gels are 3D entangled polymer or particle networks that present, simultaneously, solid and liquid-like properties. Gels are widely present in daily life products such as contact lenses, food thickeners, platforms for drug delivery, or wound healing ointments, among others. Carbohydrate-based hydrogels have gathered increasing attention for a wide range of biomedical and industrial applications (e.g. tissue engineering or water decontamination) due to their biocompatible, biodegradable and non-immunogenic features. However, the development of most gel-like materials is currently limited due their high production costs and greatly pollutant manufacturing techniques. In addition, the great structural complexity of gels, where different lengths scales and isotropic and anisotropic phases coexist, limit their characterisation at the molecular and macroscopic scales, thus hindering the design and development of functional gels with tailored properties. High Resolution Magic Angle Spinning (HR-MAS) and solid-state NMR (SSNMR) spectroscopy constitute the most powerful technologies to characterise the structure and dynamics of hydrogels at the molecular level, not accessible by other techniques. The specific objectives of the Sweet2Gel project are (i) to develop novel HR-MAS and SSNMR protocols for the characterisation of carbohydrate-based gels, (ii) to develop predictive deep-learning-based models that allow to decipher hidden relationships between the molecular and macroscopic properties of the gels and (iii) to improve the molecular models of carbohydrate gel particles by a combination of molecular dynamics and deep learning approaches. Hence, the Sweet2Gel Project aims to accelerate the development of a new generation of renewable materials with rationally designed properties for a wide range of applications.