Laser Resonance Chromatography of Superheavy Metals
This project aims at developing a novel method of optical spectroscopy to study the wholly unexplored atomic structure of the superheavy transition metals, starting with element 103, lawrencium (Lr). My team will experimentally id...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TECHNO-CLS
Emerging technologies for crystal-based gamma-ray light sour...
3M€
Cerrado
PID2021-127786NA-I00
MEDIDA DE DATOS ATOMICOS DE TIERRAS RARAS PARA EL ESTUDIO ES...
85K€
Cerrado
XQCR
Electronic structure and energy descriptors for molecular cr...
212K€
Cerrado
TReSFiDS
Time Resolved Spectroscopy of Strong Field Driven Solids
207K€
Cerrado
Descripción del proyecto
This project aims at developing a novel method of optical spectroscopy to study the wholly unexplored atomic structure of the superheavy transition metals, starting with element 103, lawrencium (Lr). My team will experimentally identify optical spectral lines that will serve as fingerprints in the search for superheavy elements in the universe. The spectral lines are strongly influenced by relativistic and quantum electrodynamic effects and thus will constitute powerful benchmarks for atomic modeling incorporated within this project. Furthermore, since the nuclear charge distribution influences the atomic structure, our experimental data will advance our understanding of the effects of nuclear shells and deformations on the stability of radionuclides at the top of the Segré chart.
While I recently opened up the atomic structure of element 102, nobelium, the new challenges faced are the refractory nature of the elements, which lay ahead, coupled with shorter half-lives and decreasing production yields. I propose to overcome these by developing an ultra-sensitive and fast Laser Resonance Chromatography (LRC) to set the new standard in optical spectroscopy. The LRC method combines the element selectivity and spectral precision of laser spectroscopy with cutting-edge technology of ion-mobility mass spectrometry. Based on high-accuracy atomic calculations, my team will optically probe the 1S0-3P1 ground-state transition in singly-charged 255Lr ions and record the distinct arrival times of the ions after passing a drift tube to identify the laser resonance signal. We will perform the experiments at leading in-flight facilities such as the GSI velocity filter SHIP and the new GANIL separator S3.
Crucially, the LRC method will be insensitive to physicochemical properties and tolerant of the decreasing yields with increasing atomic number. This paves the way for atomic structure studies of the superheavy elements, in particular, those of refractory nature beyond lawrencium.