Electronic structure and energy descriptors for molecular crystals from quantum...
Electronic structure and energy descriptors for molecular crystals from quantum crystallography and X ray charge density analysis
Most of the known organic compounds exist in crystalline form, and their stability, electronic properties and reactivity depend upon the electron density distribution in the molecules and the intermolecular interactions. This pro...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2014-61301-EXP
UNA RUTA NUEVA EN LA BUSQUEDA DEL FUNCIONAL EXACTO DE LA TEO...
42K€
Cerrado
CTQ2014-52525-P
FUNCIONALES DFT PARA EL CALCULO DE PROPIEDADES OPTICAS NO LI...
73K€
Cerrado
CTQ2013-41236-ERC
UNA NUEVA ESTRATEGIA EN DFT: FUNCIONALES HIBRIDOS ADAPTADOS...
75K€
Cerrado
FIS2008-00399
EFECTOS DE LA ESTRUCTURA ELECTRONICA EN SISTEMAS DE BAJA DIM...
263K€
Cerrado
CTQ2013-50219-EXP
FOTOGRAFIAR MOLECULAS ORGANOBORADAS EN ESTADO LIQUIDO Y ESTU...
61K€
Cerrado
ExVib
Exploring Chemistry under Vibrational Strong Coupling
200K€
Cerrado
Información proyecto XQCR
Duración del proyecto: 24 meses
Fecha Inicio: 2018-03-01
Fecha Fin: 2020-03-31
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
212K€
Descripción del proyecto
Most of the known organic compounds exist in crystalline form, and their stability, electronic properties and reactivity depend upon the electron density distribution in the molecules and the intermolecular interactions. This project aims to develop methods in the field of quantum crystallography to estimate accurate electronic and chemical properties of molecular crystals from a combination of ultra-high resolution X-ray /neutron diffraction experiments and quantum chemical calculations. Experimental X-ray wavefunctions will be derived by fitting against high-resolution diffraction data, and hence they are expected to be superior to the wavefunctions from pure quantum chemical calculations. These X-ray wavefunctions will be exploited to derive not just the accurate electron density distribution but also the energies in crystalline materials. The results from the X-ray wavefunctions will be compared against those from the conventional X-ray charge density multipolar modeling and high level density functional theory calculations. Intended outcomes of the action include experimental values for intermolecular energies, crystal lattice energies, electronic band gaps and ionization energies. The band gap energies for known organic semiconductors will be calibrated against available spectroscopic data. The fundamentally novel approach proposed in the action will represent the first attempt to derive the energy levels in crystals from diffraction data. These descriptors will be applied to study unexplored types of chemical bonding, intermolecular interactions, and the electronic structure of molecular crystals. Thus a subatomic-level understanding of how molecules bind to each other, and their energetics in crystals will help the rational design of new crystal forms, leading to 'crystal engineering' of pharmaceutical drugs with better efficacy, and functional organic materials with useful properties as opposed to trial-and-error based approaches.