Coupled cluster theory for polaritons changing molecular properties with quantu...
Coupled cluster theory for polaritons changing molecular properties with quantum light
The chemistry of light-matter states (polaritonic chemistry) is a relatively new research area in chemistry. Recent experiments have demonstrated that molecular polaritons can have a profound impact on the outcome of chemical reac...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NOTsoQUANTUM
NOTsoQUANTUM Realistic simulations of polaritonic chemistry
246K€
Cerrado
CTQ2009-08376
AVANCES EN TOPOLOGIA QUIMICO CUANTICA
80K€
Cerrado
MOLUSC
Molecules under Light Matter Strong Coupling
2M€
Cerrado
XQCR
Electronic structure and energy descriptors for molecular cr...
212K€
Cerrado
PID2020-114957GB-I00
EFECTOS NUCLEARES CUANTICOS EN EL TRANSPORTE Y LA ADSORCION...
35K€
Cerrado
FICOMOL
Field Control of Cold Molecular Collisions
2M€
Cerrado
Información proyecto QuantumLight
Duración del proyecto: 65 meses
Fecha Inicio: 2021-07-15
Fecha Fin: 2026-12-31
Líder del proyecto
SINTEF AS
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The chemistry of light-matter states (polaritonic chemistry) is a relatively new research area in chemistry. Recent experiments have demonstrated that molecular polaritons can have a profound impact on the outcome of chemical reactions taking place inside cavities. Molecular polaritons are formed when the molecular degrees of freedom couple strongly with the modes of a quantum field. From a theoretical point of view the experiments are highly complex, with many different interactions taking place, and a detailed theoretical understanding of the observations is still uncertain. The mission of QuantumLight is to explore, using advanced theoretical modeling, the phenomena that arise when quantum fields interact with molecules and the possibilities that emerge for chemistry. Detailed theoretical and computational understanding of these phenomena will open completely new ways to control and manipulate molecular systems and study new states of matter. The theoretical foundation is cavity quantum electrodynamics (QED), and it will, when combined with the methodologies of quantum chemistry, enable a predictive computational framework for interpretation and future design of polaritonic chemistry. The QuantumLight project will develop and apply accurate electronic structure methods for molecules interacting with quantum fields, in particular coupled cluster theory. Different types of quantum fields will be studied, focusing on those that appear inside optical cavities and the surface plasmon polariton field that is formed by metallic nanoparticles and nanogaps. Applications of the methodology will include ultrafast dynamics in photochemistry, molecules in chiral cavities, electron-photon dynamics, X-ray spectroscopy in cavities, and polariton-assisted chemical reactions.