The proposition aims to develop new tools in ergodic theory and dynamical systems, and explore applications to problems related to mathematical physics, geometry and arithmetics. The first general objective is to advance large dev...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto LDMRD
Duración del proyecto: 29 meses
Fecha Inicio: 2015-03-19
Fecha Fin: 2017-08-31
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
183K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proposition aims to develop new tools in ergodic theory and dynamical systems, and explore applications to problems related to mathematical physics, geometry and arithmetics. The first general objective is to advance large deviation theory for non-compact dynamical systems. We plan to deduce new subexponential large deviation bounds for Gibbs measures on the countable Markov shift and explore how these results are linked to applications such as Pomeau-Manneville dynamics describing intermittence in the theory of turbulent flows, dynamical properties of the Gauss map, which is deeply connected to Diophantine approximation, and homogeneous dynamics such as the Teichmüller flow on translation surfaces. The second general objective is to investigate Host-type measure rigidity theory for toral automorphisms and homogeneous dynamics. This topic relates to currently ongoing research on measure classification theorems, which have been influential in several applications such Diophantine approximation and quantum ergodicity.