Fractals algebraic dynamics and metric number theory
We propose to study the fractal geometry of invariant sets for endomorphisms of compact abelian groups, specifically a family of conjectures by Furstenberg on the dimensions of orbit closures under such dynamics, and on the size o...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HomDyn
Homogenous dynamics arithmetic and equidistribution
2M€
Cerrado
DLGAPS
Dynamics of Lie group actions on parameter spaces
850K€
Cerrado
DYNRIGDIOPHGEOM
Dynamics of Large Group Actions Rigidity and Diophantine G...
630K€
Cerrado
AUTOMORPHIC
Automorphic forms and L functions
45K€
Cerrado
GEODYCON
Geometry and dynamics via contact topology
888K€
Cerrado
TODYRIC
Topological Dynamics of Rings and C algebras
1M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We propose to study the fractal geometry of invariant sets for endomorphisms of compact abelian groups, specifically a family of conjectures by Furstenberg on the dimensions of orbit closures under such dynamics, and on the size of sums and intersections of invariant sets. These conjectures are related to problems on expansion in integer bases, in Diophantine approximation, measure rigidity, analysis and equidistribution. The project focuses on the conjectures themselves and some related problems, e.g. Bernoulli convolutions, and on applications to equidistribution on tori. Our approach combines tools from ergodic theory, geometric measure theory and additive combinatorics, building on recent progress in these fields and recent partial results towards the main conjectures.