Investigating the formation and early evolution of the Moon with a combined expe...
Investigating the formation and early evolution of the Moon with a combined experimental and analytical approach
The project aims to investigate one of the fundamental events in the early evolution of the solar system; the timing of the formation and initial differentiation of the Moon, by combining isotopic analyses of lunar samples with ne...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DEEPTIME
Probing the history of matter in deep time
2M€
Cerrado
AYA2015-67175-P
PROPIEDADES FISICAS Y REFLECTANCIA DE CONDRITAS PRIMITIVAS:...
52K€
Cerrado
VOLATILIS
Origin of volatile elements in the inner Solar System
1M€
Cerrado
XeMoon
Sources and sinks for excess Xe and Ar on the Moon
183K€
Cerrado
ISOCORE
New isotope tracers for core formation in terrestrial planet...
2M€
Cerrado
ISONEB
Isotopic records of solar nebula evolution and controls on p...
3M€
Cerrado
Información proyecto MoonDiff
Duración del proyecto: 25 meses
Fecha Inicio: 2018-04-04
Fecha Fin: 2020-05-31
Líder del proyecto
STICHTING VU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
166K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The project aims to investigate one of the fundamental events in the early evolution of the solar system; the timing of the formation and initial differentiation of the Moon, by combining isotopic analyses of lunar samples with new experimental constraints on the partitioning behaviour of key radiogenic parent-daughter elements. Previous isotope analyses of lunar samples provided model ages interpreted to represent key processes in the Moon’s early geologic evolution, although these interpretations remain speculative and are often conflicting. In particular, recent work by the experienced researcher (ER) has provided new insight into the Pb isotope systematics of lunar rocks and the framework for a model of magmatic evolution in the Moon, but uncertainties associated with the partitioning behaviour of U and Pb, severely hinder data interpretations. Hence, the ER will perform a series of experiments replicating the temperature and pressure conditions during lunar core formation and in the hypothesised Lunar Magma Ocean (LMO). These experiments will be performed in the Vrije Universiteit high-pressure laboratory (Work Package (WP) 1), building on their recent studies. Experimental run products will be subjected to comprehensive analysis (WP 2); e.g. scanning electron microscope imaging to characterise phase assemblages while major, minor and trace element concentrations will be determined using electron microprobe and laser ablation inductively coupled plasma mass spectrometry in order to determine partition coefficients. These partition coefficients will then be incorporated into new models of lunar differentiation and LMO crystallisation (WP 3). Finally, the ER plans to test these models with secondary ion mass spectrometry (SIMS) measurements of Pb isotope systematics in a range of lunar basalts collected during the Apollo missions and lunar meteorites (WP 4).